These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31941265)
1. Morphological analysis of the seeds of three pseudocereals by using light microscopy and ESEM-EDS. Ninfali P; Panato A; Bortolotti F; Valentini L; Gobbi P Eur J Histochem; 2020 Jan; 64(1):. PubMed ID: 31941265 [TBL] [Abstract][Full Text] [Related]
2. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Zhu F Carbohydr Polym; 2020 Nov; 248():116819. PubMed ID: 32919544 [TBL] [Abstract][Full Text] [Related]
3. Pseudocereals: a novel source of biologically active peptides. Morales D; Miguel M; Garcés-Rimón M Crit Rev Food Sci Nutr; 2021; 61(9):1537-1544. PubMed ID: 32406747 [TBL] [Abstract][Full Text] [Related]
4. Protein content and amino acids profile of pseudocereals. Mota C; Santos M; Mauro R; Samman N; Matos AS; Torres D; Castanheira I Food Chem; 2016 Feb; 193():55-61. PubMed ID: 26433287 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth ( De Bock P; Daelemans L; Selis L; Raes K; Vermeir P; Eeckhout M; Van Bockstaele F Foods; 2021 Mar; 10(3):. PubMed ID: 33808595 [TBL] [Abstract][Full Text] [Related]
6. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Martínez-Villaluenga C; Peñas E; Hernández-Ledesma B Food Chem Toxicol; 2020 Mar; 137():111178. PubMed ID: 32035214 [TBL] [Abstract][Full Text] [Related]
7. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Alvarez-Jubete L; Arendt EK; Gallagher E Int J Food Sci Nutr; 2009; 60 Suppl 4():240-57. PubMed ID: 19462323 [TBL] [Abstract][Full Text] [Related]
8. [Amaranth, quinoa and buckwheat grain products: role in human nutrition and maintenance of the intestinal microbiome]. Markova YM; Sidorova YS Vopr Pitan; 2022; 91(6):17-29. PubMed ID: 36648179 [TBL] [Abstract][Full Text] [Related]
9. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Konishi Y; Hirano S; Tsuboi H; Wada M Biosci Biotechnol Biochem; 2004 Jan; 68(1):231-4. PubMed ID: 14745190 [TBL] [Abstract][Full Text] [Related]
10. Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. Capraro J; Benedetti S; Heinzl GC; Scarafoni A; Magni C Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805525 [TBL] [Abstract][Full Text] [Related]
11. Proteins of Amaranth (Amaranthus spp.), Buckwheat (Fagopyrum spp.), and Quinoa (Chenopodium spp.): A Food Science and Technology Perspective. Janssen F; Pauly A; Rombouts I; Jansens KJA; Deleu LJ; Delcour JA Compr Rev Food Sci Food Saf; 2017 Jan; 16(1):39-58. PubMed ID: 33371541 [TBL] [Abstract][Full Text] [Related]
12. In Vitro Screening of Bioactive Compounds in some Gluten-Free Plants. Drzewiecki J; Martinez-Ayala AL; Lozano-Grande MA; Leontowicz H; Leontowicz M; Jastrzebski Z; Pasko P; Gorinstein S Appl Biochem Biotechnol; 2018 Dec; 186(4):847-860. PubMed ID: 29740801 [TBL] [Abstract][Full Text] [Related]
13. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Lamothe LM; Srichuwong S; Reuhs BL; Hamaker BR Food Chem; 2015 Jan; 167():490-6. PubMed ID: 25149016 [TBL] [Abstract][Full Text] [Related]
14. Unique nutritional features that distinguish Amaranthus cruentus L. and Chenopodium quinoa Willd seeds. José Rodríguez Gómez M; Maestro-Gaitán I; Calvo Magro P; Cruz Sobrado V; Reguera Blázquez M; Matías Prieto J Food Res Int; 2023 Feb; 164():112160. PubMed ID: 36737889 [TBL] [Abstract][Full Text] [Related]
15. Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth ( Thakur P; Kumar K; Ahmed N; Chauhan D; Eain Hyder Rizvi QU; Jan S; Singh TP; Dhaliwal HS Curr Res Food Sci; 2021; 4():917-925. PubMed ID: 34927087 [TBL] [Abstract][Full Text] [Related]
16. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. Tang Y; Li X; Chen PX; Zhang B; Liu R; Hernandez M; Draves J; Marcone MF; Tsao R J Agric Food Chem; 2016 Feb; 64(5):1103-10. PubMed ID: 26760897 [TBL] [Abstract][Full Text] [Related]
17. Antioxidants of Amaranth, Quinoa and Buckwheat Wholemeals and Heat-Damage Development in Pseudocereal-Enriched Einkorn Water Biscuits. Estivi L; Pellegrino L; Hogenboom JA; Brandolini A; Hidalgo A Molecules; 2022 Nov; 27(21):. PubMed ID: 36364365 [TBL] [Abstract][Full Text] [Related]
18. Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. Drzewiecki J; Delgado-Licon E; Haruenkit R; Pawelzik E; Martin-Belloso O; Park YS; Jung ST; Trakhtenberg S; Gorinstein S J Agric Food Chem; 2003 Dec; 51(26):7798-804. PubMed ID: 14664548 [TBL] [Abstract][Full Text] [Related]
19. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366 [TBL] [Abstract][Full Text] [Related]
20. A morphological analysis of fresh and brine-cured olives attacked by Bactrocera oleae using light microscopy and ESEM-EDS. Lanza B; Panato A; Valentini L; Rodegher P; Bortolotti F; Battistelli M; Ninfali P; Gobbi P Eur J Histochem; 2020 Sep; 64(3):. PubMed ID: 33029995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]