These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31941268)

  • 1. Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal-Electrolyte Interface via a Grain-by-Grain Approach.
    Wang Y; Gordon E; Ren H
    Anal Chem; 2020 Feb; 92(3):2859-2865. PubMed ID: 31941268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Spatiotemporal Voltammetric Techniques for Kinetic Analysis and Active Site Determination in the Electrochemical Reduction of CO
    Guo SX; Bentley CL; Kang M; Bond AM; Unwin PR; Zhang J
    Acc Chem Res; 2022 Feb; 55(3):241-251. PubMed ID: 35020363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical method for quantifying the potential of zero charge at the platinum-water electrochemical interface.
    Xu P; von Rueden AD; Schimmenti R; Mavrikakis M; Suntivich J
    Nat Mater; 2023 Apr; 22(4):503-510. PubMed ID: 36781952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidic Hydrogen Evolution Electrocatalysis at High-Entropy Alloys Correlates with its Composition-Dependent Potential of Zero Charge.
    Kim M; Batsa Tetteh E; Krysiak OA; Savan A; Xiao B; Piotrowiak TH; Andronescu C; Ludwig A; Dong Chung T; Schuhmann W
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202310069. PubMed ID: 37537136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the Nucleation of H
    Wang Y; Gordon E; Ren H
    J Phys Chem Lett; 2019 Jul; 10(14):3887-3892. PubMed ID: 31241955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved determination of the potential of zero charge at polycrystalline Au/ionic liquid interfaces.
    Vargas-Barbosa NM; Roling B
    J Chem Phys; 2018 May; 148(19):193820. PubMed ID: 30307257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction.
    Aaronson BD; Chen CH; Li H; Koper MT; Lai SC; Unwin PR
    J Am Chem Soc; 2013 Mar; 135(10):3873-80. PubMed ID: 23405963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltammetric Mapping of Hydrogen Evolution Reaction on Pt Locally via Scanning Electrochemical Cell Microscopy.
    Wang Y; Li M; Ren H
    ACS Meas Sci Au; 2022 Aug; 2(4):304-308. PubMed ID: 36785572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of Hydrogen Evolution at Individual Platinum Nanoparticles at a Buried Interface.
    Gao R; Edwards MA; Qiu Y; Barman K; White HS
    J Am Chem Soc; 2020 May; 142(19):8890-8896. PubMed ID: 32319772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes.
    Chen CH; Meadows KE; Cuharuc A; Lai SC; Unwin PR
    Phys Chem Chem Phys; 2014 Sep; 16(34):18545-52. PubMed ID: 25072300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications.
    Bentley CL; Kang M; Unwin PR
    Anal Chem; 2020 Sep; 92(17):11673-11680. PubMed ID: 32521997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Range Electrification of an Air/Electrolyte Interface and Probing Potential of Zero Charge by Conductive Amplitude-Modulated Atomic Force Microscopy.
    Dinh TD; Jang JW; Hwang S
    Anal Chem; 2023 Feb; 95(5):2901-2908. PubMed ID: 36691706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially resolved electrochemistry in ionic liquids: surface structure effects on triiodide reduction at platinum electrodes.
    Aaronson BD; Lai SC; Unwin PR
    Langmuir; 2014 Feb; 30(7):1915-9. PubMed ID: 24479903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Colocalized Electrochemical and Structural Mapping of Metal Dissolution Reaction.
    Wang Y; Li M; Gordon E; Ye Z; Ren H
    Anal Chem; 2022 Jun; 94(25):9058-9064. PubMed ID: 35700400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening Surface Structure-Electrochemical Activity Relationships of Copper Electrodes under CO
    Wahab OJ; Kang M; Daviddi E; Walker M; Unwin PR
    ACS Catal; 2022 Jun; 12(11):6578-6588. PubMed ID: 35692254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltammetric Scanning Electrochemical Cell Microscopy: Dynamic Imaging of Hydrazine Electro-oxidation on Platinum Electrodes.
    Chen CH; Jacobse L; McKelvey K; Lai SC; Koper MT; Unwin PR
    Anal Chem; 2015 Jun; 87(11):5782-9. PubMed ID: 25942527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Mapping of Electrocatalytic Activity and Selectivity via Hybrid Scanning Electrochemical Probe Microscopy.
    Ryu CH; Ren H
    Nano Lett; 2024 May; 24(20):6112-6116. PubMed ID: 38717098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning Electrochemical Cell Microscopy (SECCM) Chronopotentiometry: Development and Applications in Electroanalysis and Electrocatalysis.
    Daviddi E; Gonos KL; Colburn AW; Bentley CL; Unwin PR
    Anal Chem; 2019 Jul; 91(14):9229-9237. PubMed ID: 31251561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-layer structure of the Pt(111)-aqueous electrolyte interface.
    Ojha K; Doblhoff-Dier K; Koper MTM
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35042778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.