BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 31941273)

  • 21. Ultrasoft and Ultrastretchable Wearable Strain Sensors with Anisotropic Conductivity Enabled by Liquid Metal Fillers.
    Choe M; Sin D; Bhuyan P; Lee S; Jeon H; Park S
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics.
    Lee GH; Lee DH; Jeon W; Yoon J; Ahn K; Nam KS; Kim M; Kim JK; Koo YH; Joo J; Jung W; Lee J; Nam J; Park S; Jeong JW; Park S
    Nat Commun; 2023 Jul; 14(1):4173. PubMed ID: 37443162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EGaIn Fiber Enabled Highly Flexible Supercapacitors.
    Duan M; Ren Y; Sun X; Zhu X; Wang X; Sheng L; Liu J
    ACS Omega; 2021 Sep; 6(38):24444-24449. PubMed ID: 34604626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearable strain sensor based on highly conductive carbon nanotube/polyurethane composite fibers.
    Zhuang Z; Cheng N; Zhang L; Liu L; Zhao J; Yu H
    Nanotechnology; 2020 May; 31(20):205701. PubMed ID: 31978930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Elastically Deformable Coiled CNT/Polymer Fibers for Wearable Strain Sensors and Stretchable Supercapacitors.
    Choi JH; Noh JH; Choi C
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrahigh Strain-Insensitive Integrated Hybrid Electronics Using Highly Stretchable Bilayer Liquid Metal Based Conductor.
    Chen S; Fan S; Qi J; Xiong Z; Qiao Z; Wu Z; Yeo JC; Lim CT
    Adv Mater; 2023 Feb; 35(5):e2208569. PubMed ID: 36353902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, Thin-Film Electronics.
    Tavakoli M; Malakooti MH; Paisana H; Ohm Y; Marques DG; Alhais Lopes P; Piedade AP; de Almeida AT; Majidi C
    Adv Mater; 2018 May; ():e1801852. PubMed ID: 29845674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable Electrodeposition of Liquid Metal from an Acetonitrile-Based Electrolyte for Highly Integrated Stretchable Electronics.
    Monnens W; Zhang B; Zhou Z; Snels L; Binnemans K; Molina-Lopez F; Fransaer J
    Adv Mater; 2023 Dec; 35(51):e2305967. PubMed ID: 37703420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacing liquid metals with stretchable metal conductors.
    Kim B; Jang J; You I; Park J; Shin S; Jeon G; Kim JK; Jeong U
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7920-6. PubMed ID: 25835190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications.
    Lee J; Llerena Zambrano B; Woo J; Yoon K; Lee T
    Adv Mater; 2020 Feb; 32(5):e1902532. PubMed ID: 31495991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioinspired Superelastic Electroconductive Fiber for Wearable Electronics.
    Wu J; Wang Z; Liu W; Wang L; Xu F
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44735-44741. PubMed ID: 31663339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics.
    Ma Z; Huang Q; Xu Q; Zhuang Q; Zhao X; Yang Y; Qiu H; Yang Z; Wang C; Chai Y; Zheng Z
    Nat Mater; 2021 Jun; 20(6):859-868. PubMed ID: 33603185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires.
    Cao Z; Wang R; He T; Xu F; Sun J
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14087-14096. PubMed ID: 29613767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive and highly stretchable fibers with dual conductive microstructural sheaths for human motion and micro vibration sensing.
    Xiao J; Xiong Y; Chen J; Zhao S; Chen S; Xu B; Sheng B
    Nanoscale; 2022 Feb; 14(5):1962-1970. PubMed ID: 35060589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soft Liquid Metal-Based Conducting Composite with Robust Electrical Durability for a Wearable Electrocardiogram Sensor.
    Kim Y; Song J; An S; Shin M; Son D
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface modification of liquid metal as an effective approach for deformable electronics and energy devices.
    Bark H; Lee PS
    Chem Sci; 2021 Feb; 12(8):2760-2777. PubMed ID: 34164040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maple Leaf Inspired Conductive Fiber with Hierarchical Wrinkles for Highly Stretchable and Integratable Electronics.
    Gao Y; Yu L; Li Y; Wei L; Yin J; Wang F; Wang L; Mao J
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49059-49071. PubMed ID: 36251510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring.
    Chen J; Zhang J; Luo Z; Zhang J; Li L; Su Y; Gao X; Li Y; Tang W; Cao C; Liu Q; Wang L; Li H
    ACS Appl Mater Interfaces; 2020 May; 12(19):22200-22211. PubMed ID: 32315158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(m-phenylene isophthalamide) Polymer Core/Shell Structures.
    Jiang S; Zhang H; Song S; Ma Y; Li J; Lee GH; Han Q; Liu J
    ACS Nano; 2015 Oct; 9(10):10252-7. PubMed ID: 26390200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly stretchable patternable conductive circuits and wearable strain sensors based on polydimethylsiloxane and silver nanoparticles.
    Feng P; Ji H; Zhang L; Luo X; Leng X; He P; Feng H; Zhang J; Ma X; Zhao W
    Nanotechnology; 2019 May; 30(18):185501. PubMed ID: 30673645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.