These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31941279)

  • 1. Probing Thermotropic Phase Behavior of Dipalmitoylphosphatidylcholine Bilayers from Electrical and Topographic Data in a Horizontal Black Lipid Membrane Model.
    Corvalán NA; Perillo MA
    Langmuir; 2020 Feb; 36(5):1083-1093. PubMed ID: 31941279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase structures of binary lipid bilayers as revealed by permeability of small molecules.
    Xiang TX; Anderson BD
    Biochim Biophys Acta; 1998 Mar; 1370(1):64-76. PubMed ID: 9518554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes.
    Sharma P; Desikan R; Ayappa KG
    J Phys Chem B; 2021 Jun; 125(24):6587-6599. PubMed ID: 34081861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers.
    Velikonja A; Kramar P; Miklavčič D; Maček Lebar A
    Bioelectrochemistry; 2016 Dec; 112():132-7. PubMed ID: 26948707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs.
    Benesch MG; Lewis RN; Mannock DA; McElhaney RN
    Chem Phys Lipids; 2015 Apr; 187():34-49. PubMed ID: 25732198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; McElhaney RN
    Chem Phys Lipids; 2016 Feb; 195():21-33. PubMed ID: 26620814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding thermal phases in atomic detail by all-atom molecular-dynamics simulation of a phospholipid bilayer.
    Ogata K; Uchida W; Nakamura S
    J Phys Chem B; 2014 Dec; 118(49):14353-65. PubMed ID: 25383505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides.
    Pedersen TB; Kaasgaard T; Jensen MØ; Frokjaer S; Mouritsen OG; Jørgensen K
    Biophys J; 2005 Oct; 89(4):2494-503. PubMed ID: 16100273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature.
    Youssefian S; Rahbar N; Lambert CR; Van Dessel S
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning of homologous nicotinic acid ester prodrugs (nicotinates) into dipalmitoylphosphatidylcholine (DPPC) membrane bilayers.
    Ojogun V; Vyas SM; Lehmler HJ; Knutson BL
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):75-84. PubMed ID: 20227859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterol chemical configuration influences the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayers containing 5α-cholestan-3β- and 3α-ol.
    Benesch MG; Mannock DA; McElhaney RN
    Chem Phys Lipids; 2011 Jan; 164(1):62-9. PubMed ID: 21055394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations.
    Khakbaz P; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1489-1501. PubMed ID: 29709614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of local anesthetics on the bilayer membrane of dipalmitoylphosphatidylcholine: interdigitation of lipid bilayer and vesicle-micelle transition.
    Hata T; Matsuki H; Kaneshina S
    Biophys Chem; 2000 Sep; 87(1):25-36. PubMed ID: 11036967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; McElhaney RN
    Biochim Biophys Acta; 2014 Jul; 1838(7):1941-9. PubMed ID: 24704414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local anesthetics induce interdigitation and thermotropic changes in dipalmitoylphosphatidylcholine bilayers.
    Reddy ST; Shrivastava S; Chattopadhyay A
    Chem Phys Lipids; 2018 Jan; 210():22-27. PubMed ID: 29275150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand partitioning into lipid bilayer membranes under high pressure: Implication of variation in phase-transition temperatures.
    Matsuki H; Kato K; Okamoto H; Yoshida S; Goto M; Tamai N; Kaneshina S
    Chem Phys Lipids; 2017 Dec; 209():9-18. PubMed ID: 29042237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes.
    Mannock DA; Lee MY; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2008 Oct; 1778(10):2191-202. PubMed ID: 18539134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.