BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 31941288)

  • 1. Chemical interface damping for propagating surface plasmon polaritons in gold nanostripes.
    Brown BS; Hartland GV
    J Chem Phys; 2020 Jan; 152(2):024707. PubMed ID: 31941288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making waves: Radiation damping in metallic nanostructures.
    Devkota T; Brown BS; Beane G; Yu K; Hartland GV
    J Chem Phys; 2019 Aug; 151(8):080901. PubMed ID: 31470703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance.
    Hu M; Novo C; Funston A; Wang H; Staleva H; Zou S; Mulvaney P; Xia Y; Hartland GV
    J Mater Chem; 2008; 18(17):1949-1960. PubMed ID: 18846243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Chemical Interface Damping: Competition between Surface Damping Pathways in Amalgamated Gold Nanorods Coated with Mesoporous Silica Shells.
    Alizar YY; Ramasamy M; Kim GW; Ha JW
    JACS Au; 2023 Nov; 3(11):3247-3258. PubMed ID: 38034978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver holographic gratings as substrates for surface-enhanced Raman scattering gas analysis.
    Petrov DV; Kostenko MA; Shcherbakov AA
    Appl Opt; 2020 Mar; 59(9):2929-2934. PubMed ID: 32225843
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hong YA; Ha JW
    Analyst; 2023 Aug; 148(16):3719-3723. PubMed ID: 37458613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.
    Moon SW; Ha JW
    Analyst; 2019 Apr; 144(8):2679-2683. PubMed ID: 30855047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of substrate discontinuities on the propagating surface plasmon polariton modes in gold nanobars.
    Johns P; Yu K; Devadas MS; Li Z; Major TA; Hartland GV
    Nanoscale; 2014 Nov; 6(23):14289-96. PubMed ID: 25321926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly confined surface plasmon polaritons in the ultraviolet region.
    Chubchev ED; Nechepurenko IA; Dorofeenko AV; Vinogradov AP; Lisyansky AA
    Opt Express; 2018 Apr; 26(7):9050-9062. PubMed ID: 29715863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Particle Spectroelectrochemistry: Electrochemical Approaches for Tuning Chemical Interfaces and Plasmon Damping in Single Gold Nanorods.
    Ramasamy M; Ha JW
    J Phys Chem Lett; 2023 Jun; 14(25):5768-5775. PubMed ID: 37326616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Raman scattering of a gaseous medium near the surface of a silver holographic grating.
    Petrov DV; Zaripov AR; Toropov NA
    Opt Lett; 2017 Nov; 42(22):4728-4731. PubMed ID: 29140354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.
    Lee SY; Tsalu PV; Kim GW; Seo MJ; Hong JW; Ha JW
    Nano Lett; 2019 Apr; 19(4):2568-2574. PubMed ID: 30856334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse Anderson localization of surface plasmon polaritons.
    Cherpakova Z; Bleckmann F; Vogler T; Linden S
    Opt Lett; 2017 Jun; 42(11):2165-2168. PubMed ID: 28569872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Plasmon Polariton Interference in Gold Nanoplates.
    Beane G; Yu K; Devkota T; Johns P; Brown B; Wang GP; Hartland G
    J Phys Chem Lett; 2017 Oct; 8(19):4935-4941. PubMed ID: 28945384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D nanopillar optical antenna photodetectors.
    Senanayake P; Hung CH; Shapiro J; Scofield A; Lin A; Williams BS; Huffaker DL
    Opt Express; 2012 Nov; 20(23):25489-96. PubMed ID: 23187366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.