These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 31941288)

  • 21. Coaction effect of radiative and non-radiative damping on the lifetime of localized surface plasmon modes in individual gold nanorods.
    Qin Y; Xu Y; Ji B; Song X; Lin J
    J Chem Phys; 2023 Mar; 158(10):104701. PubMed ID: 36922139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures.
    Johns P; Yu K; Devadas MS; Hartland GV
    ACS Nano; 2016 Mar; 10(3):3375-81. PubMed ID: 26866536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How grooves reflect and confine surfaceplasmon polaritons.
    Kuttge M; García de Abajo FJ; Polman A
    Opt Express; 2009 Jun; 17(12):10385-92. PubMed ID: 19506693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.
    Kaya S; Weeber JC; Zacharatos F; Hassan K; Bernardin T; Cluzel B; Fatome J; Finot C
    Opt Express; 2013 Sep; 21(19):22269-84. PubMed ID: 24104119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.
    Chen JD; Xiang J; Jiang S; Dai QF; Tie SL; Lan S
    Nanoscale; 2018 May; 10(19):9153-9163. PubMed ID: 29725675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.
    Paul A; Solis D; Bao K; Chang WS; Nauert S; Vidgerman L; Zubarev ER; Nordlander P; Link S
    ACS Nano; 2012 Sep; 6(9):8105-13. PubMed ID: 22900780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon polaritons in the near infrared on fluorine doped tin oxide films.
    Dominici L; Michelotti F; Brown TM; Reale A; Di Carlo A
    Opt Express; 2009 Jun; 17(12):10155-67. PubMed ID: 19506669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array.
    Cao ZL; Ong HC
    Opt Express; 2016 Jun; 24(12):12489-500. PubMed ID: 27410269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?
    Foley Iv JJ; Harutyunyan H; Rosenmann D; Divan R; Wiederrecht GP; Gray SK
    Sci Rep; 2015 Apr; 5():9929. PubMed ID: 25905685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmon polariton waveguiding in random surface nanostructures.
    Bozhevolnyi SI; Volkov VS; Leosson K; Boltasseva A
    J Microsc; 2003 Mar; 209(Pt 3):209-13. PubMed ID: 12641764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-Dependent Electrical Transport Properties in Conducting Diamond Nanostripes.
    Zhou AF; Pacheco E; Zhou B; Feng PX
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons.
    Chen S; Leng PL; Konečná A; Modin E; Gutierrez-Amigo M; Vicentini E; Martín-García B; Barra-Burillo M; Niehues I; Maciel Escudero C; Xie XY; Hueso LE; Artacho E; Aizpurua J; Errea I; Vergniory MG; Chuvilin A; Xiu FX; Hillenbrand R
    Nat Mater; 2023 Jul; 22(7):860-866. PubMed ID: 37142739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy.
    Sun Q; Yu H; Ueno K; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Mar; 10(3):3835-42. PubMed ID: 26878248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local observation of plasmon focusingin Talbot carpets.
    Cherukulappurath S; Heinis D; Cesario J; van Hulst NF; Enoch S; Quidant R
    Opt Express; 2009 Dec; 17(26):23772-84. PubMed ID: 20052088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction and spectral gaps of surface plasmon modes in gold nano-structures.
    Kolomenskii A; Peng S; Hembd J; Kolomenski A; Noel J; Strohaber J; Teizer W; Schuessler H
    Opt Express; 2011 Mar; 19(7):6587-98. PubMed ID: 21451686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes.
    Yang J; Sun Q; Ueno K; Shi X; Oshikiri T; Misawa H; Gong Q
    Nat Commun; 2018 Nov; 9(1):4858. PubMed ID: 30451866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances.
    Li Y; Zhao K; Sobhani H; Bao K; Nordlander P
    J Phys Chem Lett; 2013 Apr; 4(8):1352-7. PubMed ID: 26282152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable surface plasmon polaritons in a Weyl semimetal waveguide.
    Oskoui Abdol S; Soltani Vala A; Abdollahipour B
    J Phys Condens Matter; 2019 Aug; 31(33):335002. PubMed ID: 31082812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires.
    Nauert S; Paul A; Zhen YR; Solis D; Vigderman L; Chang WS; Zubarev ER; Nordlander P; Link S
    ACS Nano; 2014 Jan; 8(1):572-80. PubMed ID: 24308802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.