These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31941292)

  • 1. Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions.
    Maroto-Centeno JA; Quesada-Pérez M
    J Chem Phys; 2020 Jan; 152(2):024107. PubMed ID: 31941292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug release from pH-sensitive polymeric micelles with different drug distributions: insight from coarse-grained simulations.
    Nie SY; Lin WJ; Yao N; Guo XD; Zhang LJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17668-78. PubMed ID: 25275994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-Grained Simulations of Release of Drugs Housed in Flexible Nanogels: New Insights into Kinetic Parameters.
    Quesada-Pérez M; Pérez-Mas L; Carrizo-Tejero D; Maroto-Centeno JA; Ramos-Tejada MDM; Martín-Molina A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancement in nanogel formulations provides controlled drug release.
    Ahmed S; Alhareth K; Mignet N
    Int J Pharm; 2020 Jun; 584():119435. PubMed ID: 32439585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Size Distribution for Diffusion-Controlled Drug Release From Drug Delivery Systems of Various Geometries.
    Spiridonova TI; Tverdokhlebov SI; Anissimov YG
    J Pharm Sci; 2019 Aug; 108(8):2690-2697. PubMed ID: 30980858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug release from a pH-sensitive multiblock co-polymer thermogel.
    Garripelli VK; Namgung R; Kim WJ; Jo S
    J Biomater Sci Polym Ed; 2012; 23(12):1505-19. PubMed ID: 21771392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fiber distribution model for predicting drug release rates.
    Petlin DG; Amarah AA; Tverdokhlebov SI; Anissimov YG
    J Control Release; 2017 Jul; 258():218-225. PubMed ID: 28526437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size effect on competition of two diffusion mechanisms for drug molecules in amorphous polymers.
    Zhao ZJ; Wang Q; Zhang L
    J Phys Chem B; 2007 Nov; 111(46):13167-72. PubMed ID: 17973517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanogel--an advanced drug delivery tool: Current and future.
    Sharma A; Garg T; Aman A; Panchal K; Sharma R; Kumar S; Markandeywar T
    Artif Cells Nanomed Biotechnol; 2016; 44(1):165-77. PubMed ID: 25053442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico modelling of drug-polymer interactions for pharmaceutical formulations.
    Ahmad S; Johnston BF; Mackay SP; Schatzlein AG; Gellert P; Sengupta D; Uchegbu IF
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S423-33. PubMed ID: 20519214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A different diffusion mechanism for drug molecules in amorphous polymers.
    Zhao ZJ; Wang Q; Zhang L; Liu YC
    J Phys Chem B; 2007 May; 111(17):4411-6. PubMed ID: 17428084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning HIV drug release from a nanogel-based in situ forming implant by changing nanogel size.
    Town AR; Taylor J; Dawson K; Niezabitowska E; Elbaz NM; Corker A; Garcia-Tuñón E; McDonald TO
    J Mater Chem B; 2019 Jan; 7(3):373-383. PubMed ID: 32254724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug Release from Inert Spherical Matrix Systems Using Monte Carlo Simulations.
    Villalobos R; Garcia EV; Quintanar D; Young PM
    Curr Drug Deliv; 2017; 14(1):65-72. PubMed ID: 27174175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and use of nanogels as carriers of drugs.
    Li C; Obireddy SR; Lai WF
    Drug Deliv; 2021 Dec; 28(1):1594-1602. PubMed ID: 34308729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-loaded pH-responsive polymeric micelles: Simulations and experiments of micelle formation, drug loading and drug release.
    Li Q; Yao W; Yu X; Zhang B; Dong J; Jin Y
    Colloids Surf B Biointerfaces; 2017 Oct; 158():709-716. PubMed ID: 28778054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common profile for polymer-based controlled releases and its logical interpretation to general release process.
    Li S; Shen Y; Li W; Hao X
    J Pharm Pharm Sci; 2006; 9(2):238-44. PubMed ID: 16959193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled drug release from hydrogels for contact lenses: Drug partitioning and diffusion.
    Pimenta AFR; Ascenso J; Fernandes JCS; Colaço R; Serro AP; Saramago B
    Int J Pharm; 2016 Dec; 515(1-2):467-475. PubMed ID: 27789366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct determination of forces between charged nanogels through coarse-grained simulations.
    Quesada-Pérez M; Maroto-Centeno JA; Martín-Molina A; Moncho-Jordá A
    Phys Rev E; 2018 Apr; 97(4-1):042608. PubMed ID: 29758622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying diffusion-controlled drug release from spherical devices using Monte Carlo simulations.
    Hadjitheodorou A; Kalosakas G
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):763-8. PubMed ID: 25427485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart pH-Sensitive Nanogels for Controlled Release in an Acidic Environment.
    Wei P; Gangapurwala G; Pretzel D; Leiske MN; Wang L; Hoeppener S; Schubert S; Brendel JC; Schubert US
    Biomacromolecules; 2019 Jan; 20(1):130-140. PubMed ID: 30365881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.