BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31941402)

  • 1. Cyto-Mine: An Integrated, Picodroplet System for High-Throughput Single-Cell Analysis, Sorting, Dispensing, and Monoclonality Assurance.
    Josephides D; Davoli S; Whitley W; Ruis R; Salter R; Gokkaya S; Vallet M; Matthews D; Benazzi G; Shvets E; Gesellchen F; Geere D; Liu X; Li X; Mackworth B; Young W; Owen Z; Smith C; Starkie D; White J; Sweeney B; Hinchliffe M; Tickle S; Lightwood DJ; Rehak M; Craig FF; Holmes D
    SLAS Technol; 2020 Apr; 25(2):177-189. PubMed ID: 31941402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling picodroplet microfluidics with plate imaging for the rapid creation of biomanufacturing suitable cell lines with high probability and improved multi-step assurance of monoclonality.
    Pybus LP; Kalsi D; Matthews JT; Hawke E; Barber N; Richer R; Young A; Saunders FL
    Biotechnol J; 2022 Jan; 17(1):e2100357. PubMed ID: 34633760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.
    Nakamura T; Omasa T
    J Biosci Bioeng; 2015 Sep; 120(3):323-9. PubMed ID: 25792187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput and automation advances for accelerating single-cell cloning, monoclonality and early phase clone screening steps in mammalian cell line development for biologics production.
    Tejwani V; Chaudhari M; Rai T; Sharfstein ST
    Biotechnol Prog; 2021 Nov; 37(6):e3208. PubMed ID: 34478248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspendable Hydrogel Nanovials for Massively Parallel Single-Cell Functional Analysis and Sorting.
    de Rutte J; Dimatteo R; Archang MM; van Zee M; Koo D; Lee S; Sharrow AC; Krohl PJ; Mellody M; Zhu S; Eichenbaum JV; Kizerwetter M; Udani S; Ha K; Willson RC; Bertozzi AL; Spangler JB; Damoiseaux R; Di Carlo D
    ACS Nano; 2022 May; 16(5):7242-7257. PubMed ID: 35324146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assuring Clonality on the Beacon Digital Cell Line Development Platform.
    Le K; Tan C; Le H; Tat J; Zasadzinska E; Diep J; Zastrow R; Chen C; Stevens J
    Biotechnol J; 2020 Jan; 15(1):e1900247. PubMed ID: 31743597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated system for high-throughput single cell-based breeding.
    Yoshimoto N; Kida A; Jie X; Kurokawa M; Iijima M; Niimi T; Maturana AD; Nikaido I; Ueda HR; Tatematsu K; Tanizawa K; Kondo A; Fujii I; Kuroda S
    Sci Rep; 2013; 3():1191. PubMed ID: 23378922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging.
    Evans K; Albanetti T; Venkat R; Schoner R; Savery J; Miro-Quesada G; Rajan B; Groves C
    Biotechnol Prog; 2015; 31(5):1172-8. PubMed ID: 26195345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of high-throughput analytics and cell imaging enables direct early productivity and product quality assessment during Chinese Hamster ovary cell line development for a complex multi-subunit vaccine antigen.
    Li X; Zhang Y; Jing L; Fu Z; Ma O; Ganguly J; Vaidya N; Sisson R; Naginskaya J; Chinthala A; Cui M; Yamagata R; Wilson M; Sanders M; Wang Z; Lo Surdo P; Bugno M
    Biotechnol Prog; 2020 Mar; 36(2):e2914. PubMed ID: 31568688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of an automated imaging workflow to generate clonally-derived cell lines for therapeutic proteins.
    Shaw D; Yim M; Tsukuda J; Joly JC; Lin A; Snedecor B; Laird MW; Lang SE
    Biotechnol Prog; 2018 May; 34(3):584-592. PubMed ID: 28960825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential screening by ClonePix FL and intracellular staining facilitate isolation of high producer cell lines for monoclonal antibody manufacturing.
    Roy G; Miro-Quesada G; Zhuang L; Martin T; Zhu J; Wu H; Marelli M; Bowen MA
    J Immunol Methods; 2017 Dec; 451():100-110. PubMed ID: 28890364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chip-based single-cell cloning to accelerate biologic production timelines.
    Diep J; Le H; Le K; Zasadzinska E; Tat J; Yam P; Zastrow R; Gomez N; Stevens J
    Biotechnol Prog; 2021 Nov; 37(6):e3192. PubMed ID: 34323013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical guide to intelligent image-activated cell sorting.
    Isozaki A; Mikami H; Hiramatsu K; Sakuma S; Kasai Y; Iino T; Yamano T; Yasumoto A; Oguchi Y; Suzuki N; Shirasaki Y; Endo T; Ito T; Hiraki K; Yamada M; Matsusaka S; Hayakawa T; Fukuzawa H; Yatomi Y; Arai F; Di Carlo D; Nakagawa A; Hoshino Y; Hosokawa Y; Uemura S; Sugimura T; Ozeki Y; Nitta N; Goda K
    Nat Protoc; 2019 Aug; 14(8):2370-2415. PubMed ID: 31278398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simplifying stable CHO cell line generation with high probability of monoclonality by using microfluidic dispensing as an alternative to fluorescence activated cell sorting.
    Chakrabarti L; Savery J; Mpindi JP; Klover J; Li L; Zhu J
    Biotechnol Prog; 2024 Mar; ():e3441. PubMed ID: 38462762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput automated platform for the development of manufacturing cell lines for protein therapeutics.
    Shi S; Condon RG; Deng L; Saunders J; Hung F; Tsao YS; Liu Z
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined approach of selective and accelerated cloning for microfluidic chip-based system increases clone specific productivity.
    Desmurget C; Frentzel J; Strembitska A; Sobkowiak K; Perilleux A; Souquet J; Borth N; Douet J
    Biotechnol J; 2024 May; 19(5):e2300488. PubMed ID: 38803036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel high-throughput cell-based hybridoma screening methodology using the Celigo Image Cytometer.
    Zhang H; Chan LL; Rice W; Kassam N; Longhi MS; Zhao H; Robson SC; Gao W; Wu Y
    J Immunol Methods; 2017 Aug; 447():23-30. PubMed ID: 28414024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell-based breeding: Rational strategy for the establishment of cell lines from a single cell with the most favorable properties.
    Yoshimoto N; Kuroda S
    J Biosci Bioeng; 2014 Apr; 117(4):394-400. PubMed ID: 24216459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.
    Popp O; Müller D; Didzus K; Paul W; Lipsmeier F; Kirchner F; Niklas J; Mauch K; Beaucamp N
    Biotechnol Bioeng; 2016 Sep; 113(9):2005-19. PubMed ID: 26913695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.