BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31941517)

  • 1. Three-dimensional assessment of coronary high-intensity plaques with T1-weighted cardiovascular magnetic resonance imaging to predict periprocedural myocardial injury after elective percutaneous coronary intervention.
    Hosoda H; Asaumi Y; Noguchi T; Morita Y; Kataoka Y; Otsuka F; Nakao K; Fujino M; Nagai T; Nakai M; Nishimura K; Kono A; Komori Y; Hoshi T; Sato A; Kawasaki T; Izumi C; Kusano K; Fukuda T; Yasuda S
    J Cardiovasc Magn Reson; 2020 Jan; 22(1):5. PubMed ID: 31941517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid three-dimensional quantification of high-intensity plaques from coronary atherosclerosis T
    Nakazawa M; Matsumoto H; Li D; Slomka PJ; Dey D; Cadet S; Isodono K; Irie D; Higuchi S; Tanisawa H; Ohya H; Kitamura R; Komori Y; Hondera T; Sato I; Lee HL; Christodoulou AG; Xie Y; Shinke T
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):100999. PubMed ID: 38237903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between coronary high-intensity plaques on T1-weighted imaging by cardiovascular magnetic resonance and vulnerable plaque features by near-infrared spectroscopy and intravascular ultrasound: a prospective cohort study.
    Fukase T; Dohi T; Fujimoto S; Nishio R; Nozaki YO; Kudo A; Takeuchi M; Takahashi N; Chikata Y; Endo H; Kawaguchi YO; Doi S; Nishiyama H; Hiki M; Okai I; Iwata H; Yokoyama T; Okazaki S; Miyauchi K; Daida H; Li D; Xie Y; Minamino T
    J Cardiovasc Magn Reson; 2023 Jan; 25(1):4. PubMed ID: 36710360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of coronary plaque characteristics on periprocedural myocardial injury in elective percutaneous coronary intervention.
    Usami K; Watabe H; Hoshi T; Sakai S; Hiraya D; Sato A; Ieda M
    Eur Radiol; 2023 May; 33(5):3020-3028. PubMed ID: 36441216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of multi-vessel therapy to the risk of periprocedural myocardial injury after elective coronary intervention: exploratory study.
    Chen ZW; Yang HB; Chen YH; Ma JY; Qian JY; Ge JB
    BMC Cardiovasc Disord; 2017 Feb; 17(1):69. PubMed ID: 28241795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incidence, predictors and clinical significance of periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention.
    Zhou Y; Chen Z; Ma J; Chen A; Lu D; Wu Y; Ren D; Zhang C; Dai C; Zhang Y; Qian J; Ge J
    J Cardiol; 2020 Sep; 76(3):309-316. PubMed ID: 32354492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coronary high-intensity plaque on T1-weighted magnetic resonance imaging and its association with myocardial injury after percutaneous coronary intervention.
    Hoshi T; Sato A; Akiyama D; Hiraya D; Sakai S; Shindo M; Mori K; Minami M; Aonuma K
    Eur Heart J; 2015 Aug; 36(29):1913-22. PubMed ID: 26033978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary artery calcium score in predicting periprocedural myocardial infarction in patients undergoing an elective percutaneous coronary intervention.
    Kang MG; Kang Y; Jang HG; Kim K; Koh JS; Park JR; Hwang SJ; Hwang JY; Bae JS; Ahn JH; Jang JY; Park Y; Jeong YH; Kwak CH; Park HW
    Coron Artery Dis; 2018 Nov; 29(7):589-596. PubMed ID: 29965838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic Impact of Periprocedural Myocardial Infarction in Patients Undergoing Elective Percutaneous Coronary Interventions.
    Koskinas KC; Ndrepepa G; Räber L; Karagiannis A; Kufner S; Zanchin T; Hieber J; Hunziker L; Mayer K; Byrne RA; Heg D; Windecker S; Kastrati A
    Circ Cardiovasc Interv; 2018 Dec; 11(12):e006752. PubMed ID: 30545257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red Cell Distribution Width as a Marker of Periprocedural Myocardial Infarction in Patients with Elective Percutaneous Coronary Intervention.
    Dai C; Chen Z; Qian J; Ge J
    J Cardiovasc Transl Res; 2021 Jun; 14(3):449-456. PubMed ID: 33029742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periprocedural myocardial damage during percutaneous coronary intervention: a point-of-care platelet testing and intravascular ultrasound/virtual histology study.
    Michalak M; Huczek Z; Filipiak KJ; Roik MF; Kochman J; Opolski G
    Kardiol Pol; 2013; 71(4):325-33. PubMed ID: 23788337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plaque Characterization to Inform the Prediction and Prevention of Periprocedural Myocardial Infarction During Percutaneous Coronary Intervention: The CANARY Trial (Coronary Assessment by Near-infrared of Atherosclerotic Rupture-prone Yellow).
    Stone GW; Maehara A; Muller JE; Rizik DG; Shunk KA; Ben-Yehuda O; Genereux P; Dressler O; Parvataneni R; Madden S; Shah P; Brilakis ES; Kini AS;
    JACC Cardiovasc Interv; 2015 Jun; 8(7):927-36. PubMed ID: 26003018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated serum miR-133a predicts patients at risk of periprocedural myocardial injury after elective percutaneous coronary intervention.
    Zhou Y; Chen Z; Chen A; Ma J; Qian J; Ge J
    Cardiol J; 2022; 29(2):284-292. PubMed ID: 32207842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk stratification of periprocedural myocardial infarction after percutaneous coronary intervention: Analysis based on the SCAI definition.
    Zhang D; Li Y; Yin D; He Y; Chen C; Song C; Yan R; Zhu C; Xu B; Dou K
    Catheter Cardiovasc Interv; 2017 Mar; 89(S1):534-540. PubMed ID: 28191726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of large periprocedural myocardial infarction on mortality after percutaneous coronary intervention and coronary artery bypass grafting for left main disease: an analysis from the EXCEL trial.
    Ben-Yehuda O; Chen S; Redfors B; McAndrew T; Crowley A; Kosmidou I; Kandzari DE; Puskas JD; Morice MC; Taggart DP; Leon MB; Lembo NJ; Brown WM; Simonton CA; Dressler O; Kappetein AP; Sabik JF; Serruys PW; Stone GW
    Eur Heart J; 2019 Jun; 40(24):1930-1941. PubMed ID: 30919909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of near-infrared spectroscopy to detect the extent of lipid core plaque leading to periprocedural myocardial infarction.
    Matsuoka T; Kitahara H; Saito K; Mori N; Tateishi K; Fujimoto Y; Kobayashi Y
    Catheter Cardiovasc Interv; 2021 Nov; 98(5):E695-E704. PubMed ID: 34415682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of high-density lipoprotein 3 cholesterol subfraction on periprocedural myocardial injury in patients who underwent elective percutaneous coronary intervention.
    Harada K; Kikuchi R; Suzuki S; Tanaka A; Aoki T; Iwakawa N; Kojima H; Hirayama K; Mitsuda T; Sumi T; Negishi Y; Ishii H; Murohara T
    Lipids Health Dis; 2018 Feb; 17(1):21. PubMed ID: 29391013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of Intravascular Ultrasound- and Optical Coherence Tomography-Assessed Coronary Plaque Morphology With Periprocedural Myocardial Injury in Patients With Stable Angina Pectoris.
    Kimura S; Sugiyama T; Hishikari K; Yamakami Y; Sagawa Y; Kojima K; Ohtani H; Hikita H; Takahashi A; Isobe M
    Circ J; 2015; 79(9):1944-53. PubMed ID: 26095152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive Value of Aortic Valve Calcification for Periprocedural Myocardial Injury in Patients Undergoing Percutaneous Coronary Intervention.
    Shibata Y; Ishii H; Suzuki S; Tanaka A; Tatami Y; Harata S; Ota T; Shimbo Y; Takayama Y; Kunimura A; Hirayama K; Harada K; Osugi N; Murohara T
    J Atheroscler Thromb; 2017 May; 24(5):487-494. PubMed ID: 27733732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of postpercutaneous coronary intervention myocardial infarction: insights from intravascular imaging, coronary flow, and biomarker evaluation.
    Hoole SP; Hernández-Sánchez J; Brown AJ; Giblett JP; Bennett MR; West NEJ
    Coron Artery Dis; 2018 May; 29(3):246-253. PubMed ID: 29112510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.