BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 319416)

  • 1. Tracheal extubation of the neonate at 2 to 3 cm H2O continuous positive airway pressure.
    Fox WW; Berman LS; Dinwiddie R; Shaffer TH
    Pediatrics; 1977 Feb; 59(2):257-61. PubMed ID: 319416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successful extubation of newborn infants without preextubation trial of continuous positive airway pressure.
    Kim EH
    J Perinatol; 1989 Mar; 9(1):72-6. PubMed ID: 2651597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Successful direct extubation of very low birth weight infants from low intermittent mandatory ventilation rate.
    Kim EH; Boutwell WC
    Pediatrics; 1987 Sep; 80(3):409-14. PubMed ID: 3114710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of weaning and direct extubation from open lung high-frequency ventilation in preterm infants.
    van Velzen A; De Jaegere A; van der Lee J; van Kaam A
    Pediatr Crit Care Med; 2009 Jan; 10(1):71-5. PubMed ID: 19057441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in respiratory pattern during continuous positive airway pressure in infants after cardiac surgery.
    Imanaka H; Takeuchi M; Tachibana K; Takauchi Y; Nishimura M
    J Anesth; 2004; 18(4):241-9. PubMed ID: 15549465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A randomized controlled trial of post-extubation bubble continuous positive airway pressure versus Infant Flow Driver continuous positive airway pressure in preterm infants with respiratory distress syndrome.
    Gupta S; Sinha SK; Tin W; Donn SM
    J Pediatr; 2009 May; 154(5):645-50. PubMed ID: 19230906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A randomized trial of non-synchronized Nasopharyngeal Intermittent Mandatory Ventilation (nsNIMV) vs. Nasal Continuous Positive Airway Pressure (NCPAP) in the prevention of extubation failure in pre-term < 1,500 grams.
    Khorana M; Paradeevisut H; Sangtawesin V; Kanjanapatanakul W; Chotigeat U; Ayutthaya JK
    J Med Assoc Thai; 2008 Oct; 91 Suppl 3():S136-42. PubMed ID: 19253509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliance of the respiratory system as a predictor for successful extubation in very-low-birth-weight infants recovering from respiratory distress syndrome.
    Smith J; Pieper CH; Maree D; Gie RP
    S Afr Med J; 1999 Oct; 89(10):1097-102. PubMed ID: 10582068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung volume measurements immediately after extubation by prediction of "extubation failure" in premature infants.
    Dimitriou G; Greenough A; Laubscher B
    Pediatr Pulmonol; 1996 Apr; 21(4):250-4. PubMed ID: 9121856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial.
    Finer NN; Carlo WA; Duara S; Fanaroff AA; Donovan EF; Wright LL; Kandefer S; Poole WK;
    Pediatrics; 2004 Sep; 114(3):651-7. PubMed ID: 15342835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nasal continuous positive airway pressure facilitates extubation of very low birth weight neonates.
    Higgins RD; Richter SE; Davis JM
    Pediatrics; 1991 Nov; 88(5):999-1003. PubMed ID: 1945642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracheal gas insufflation-augmented continuous positive airway pressure in a spontaneously breathing model of neonatal respiratory distress.
    Miller TL; Blackson TJ; Shaffer TH; Touch SM
    Pediatr Pulmonol; 2004 Nov; 38(5):386-95. PubMed ID: 15390348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous minute ventilation is a predictor of extubation failure in extremely-low-birth-weight infants.
    Vento G; Tortorolo L; Zecca E; Rosano A; Matassa PG; Papacci P; Romagnoli C
    J Matern Fetal Neonatal Med; 2004 Mar; 15(3):147-54. PubMed ID: 15280139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nasal bilevel vs. continuous positive airway pressure in preterm infants.
    Migliori C; Motta M; Angeli A; Chirico G
    Pediatr Pulmonol; 2005 Nov; 40(5):426-30. PubMed ID: 16155882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A randomised controlled trial of two methods of delivering nasal continuous positive airway pressure after extubation to infants weighing less than 1000 g: binasal (Hudson) versus single nasal prongs.
    Davis P; Davies M; Faber B
    Arch Dis Child Fetal Neonatal Ed; 2001 Sep; 85(2):F82-5. PubMed ID: 11517198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracorporeal membrane oxygenation for neonatal respiratory failure. A report of 50 cases.
    Moront MG; Katz NM; Keszler M; Visner MS; Hoy GR; O'Connell JJ; Cox C; Wallace RB
    J Thorac Cardiovasc Surg; 1989 May; 97(5):706-14. PubMed ID: 2709862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theophylline treatment in the extubation of infants weighing less than 1,250 grams: a controlled trial.
    Durand DJ; Goodman A; Ray P; Ballard RA; Clyman RI
    Pediatrics; 1987 Nov; 80(5):684-8. PubMed ID: 3313257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nasal continuous positive airway pressure from high flow cannula versus Infant Flow for Preterm infants.
    Campbell DM; Shah PS; Shah V; Kelly EN
    J Perinatol; 2006 Sep; 26(9):546-9. PubMed ID: 16837929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of continuous positive airway pressure on the ventilatory response to CO2 in preterm infants.
    Durand M; McCann E; Brady JP
    Pediatrics; 1983 Apr; 71(4):634-8. PubMed ID: 6403913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum levels of CPAP for tracheal extubation of newborn infants.
    Berman LS; Fox WW; Raphaely RC; Downes JJ
    J Pediatr; 1976 Jul; 89(1):109-12. PubMed ID: 778361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.