These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31941710)

  • 1. Nanoscopy through a plasmonic nanolens.
    Horton MJ; Ojambati OS; Chikkaraddy R; Deacon WM; Kongsuwan N; Demetriadou A; Hess O; Baumberg JJ
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2275-2281. PubMed ID: 31941710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution imaging of interactions between molecules and plasmonic nanostructures.
    Willets KA
    Phys Chem Chem Phys; 2013 Apr; 15(15):5345-54. PubMed ID: 23321954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic-perovskite solar cells, light emitters, and sensors.
    Ai B; Fan Z; Wong ZJ
    Microsyst Nanoeng; 2022; 8():5. PubMed ID: 35070349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-Field Super-resolution Detection of Plasmonic Near-Fields.
    Boutelle RC; Neuhauser D; Weiss S
    ACS Nano; 2016 Aug; 10(8):7955-62. PubMed ID: 27501216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy.
    Zu S; Han T; Jiang M; Liu Z; Jiang Q; Lin F; Zhu X; Fang Z
    Nano Lett; 2019 Feb; 19(2):775-780. PubMed ID: 30596507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution imaging of SERS hot spots.
    Willets KA
    Chem Soc Rev; 2014 Jun; 43(11):3854-64. PubMed ID: 24309836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale.
    Wertz E; Isaacoff BP; Flynn JD; Biteen JS
    Nano Lett; 2015 Apr; 15(4):2662-70. PubMed ID: 25799002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling Single Photons from Discrete Quantum Emitters in WSe
    Blauth M; Jürgensen M; Vest G; Hartwig O; Prechtl M; Cerne J; Finley JJ; Kaniber M
    Nano Lett; 2018 Nov; 18(11):6812-6819. PubMed ID: 30153417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot.
    Mack DL; Cortés E; Giannini V; Török P; Roschuk T; Maier SA
    Nat Commun; 2017 Feb; 8():14513. PubMed ID: 28211479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of Nanoscale Light Confinement in Plasmonic Nanoantennas by Brownian Optical Microscopy.
    Lee YU; Wisna GBM; Hsu SW; Zhao J; Lei M; Li S; Tao AR; Liu Z
    ACS Nano; 2020 Jun; 14(6):7666-7672. PubMed ID: 32438800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifting molecular localization by plasmonic coupling in a single-molecule mirage.
    Raab M; Vietz C; Stefani FD; Acuna GP; Tinnefeld P
    Nat Commun; 2017 Jan; 8():13966. PubMed ID: 28074833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterodimeric Plasmonic Nanogaps for Biosensing.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities.
    Mertens J; Demetriadou A; Bowman RW; Benz F; Kleemann ME; Tserkezis C; Shi Y; Yang HY; Hess O; Aizpurua J; Baumberg JJ
    Nano Lett; 2016 Sep; 16(9):5605-11. PubMed ID: 27529641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures.
    Kim JM; Lee C; Lee Y; Lee J; Park SJ; Park S; Nam JM
    Adv Mater; 2021 Nov; 33(46):e2006966. PubMed ID: 34013617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Optical to Chemical Hot Spots in Plasmonics.
    Gargiulo J; Berté R; Li Y; Maier SA; Cortés E
    Acc Chem Res; 2019 Sep; 52(9):2525-2535. PubMed ID: 31430119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Nanoprobes for Stimulated Emission Depletion Nanoscopy.
    Cortés E; Huidobro PA; Sinclair HG; Guldbrand S; Peveler WJ; Davies T; Parrinello S; Görlitz F; Dunsby C; Neil MA; Sivan Y; Parkin IP; French PM; Maier SA
    ACS Nano; 2016 Nov; 10(11):10454-10461. PubMed ID: 27794591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.