These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 31941808)

  • 1. Linking Sfl1 Regulation of Hyphal Development to Stress Response Kinases in Candida albicans.
    Unoje O; Yang M; Lu Y; Su C; Liu H
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31941808
    [No Abstract]   [Full Text] [Related]  

  • 2. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation.
    Lu Y; Su C; Unoje O; Liu H
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1975-80. PubMed ID: 24449897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.
    Su C; Lu Y; Liu H
    Mol Biol Cell; 2013 Feb; 24(3):385-97. PubMed ID: 23171549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner.
    Glory A; van Oostende CT; Geitmann A; Bachewich C
    Fungal Genet Biol; 2017 Oct; 107():51-66. PubMed ID: 28803909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyphal induction under the condition without inoculation in Candida albicans is triggered by Brg1-mediated removal of NRG1 inhibition.
    Su C; Yu J; Sun Q; Liu Q; Lu Y
    Mol Microbiol; 2018 May; 108(4):410-423. PubMed ID: 29485686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans.
    Lu Y; Su C; Liu H
    PLoS Pathog; 2012; 8(4):e1002663. PubMed ID: 22536157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model.
    Song W; Wang H; Chen J
    FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyphal development in Candida albicans from different cell states.
    Su C; Yu J; Lu Y
    Curr Genet; 2018 Dec; 64(6):1239-1243. PubMed ID: 29796903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida albicans hyphal initiation and elongation.
    Lu Y; Su C; Liu H
    Trends Microbiol; 2014 Dec; 22(12):707-14. PubMed ID: 25262420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive functional portrait of two heat shock factor-type transcriptional regulators involved in Candida albicans morphogenesis and virulence.
    Znaidi S; Nesseir A; Chauvel M; Rossignol T; d'Enfert C
    PLoS Pathog; 2013 Aug; 9(8):e1003519. PubMed ID: 23966855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans.
    Zeidler U; Lettner T; Lassnig C; Müller M; Lajko R; Hintner H; Breitenbach M; Bito A
    FEMS Yeast Res; 2009 Feb; 9(1):126-42. PubMed ID: 19054126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans.
    Lindsay AK; Deveau A; Piispanen AE; Hogan DA
    Eukaryot Cell; 2012 Oct; 11(10):1219-25. PubMed ID: 22886999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies.
    McCall AD; Kumar R; Edgerton M
    PLoS Pathog; 2018 Sep; 14(9):e1007316. PubMed ID: 30252918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling through protein kinases and transcriptional regulators in Candida albicans.
    Dhillon NK; Sharma S; Khuller GK
    Crit Rev Microbiol; 2003; 29(3):259-75. PubMed ID: 14582620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans.
    Wakade RS; Ristow LC; Stamnes MA; Kumar A; Krysan DJ
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The NDR Kinase Cbk1 Downregulates the Transcriptional Repressor Nrg1 through the mRNA-Binding Protein Ssd1 in Candida albicans.
    Lee HJ; Kim JM; Kang WK; Yang H; Kim JY
    Eukaryot Cell; 2015 Jul; 14(7):671-83. PubMed ID: 26002720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The zinc cluster transcription factor Rha1 is a positive filamentation regulator in Candida albicans.
    Parvizi Omran R; Ramírez-Zavala B; Aji Tebung W; Yao S; Feng J; Law C; Dumeaux V; Morschhäuser J; Whiteway M
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34849863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO
    Lu Y; Su C; Ray S; Yuan Y; Liu H
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647154
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 30.