These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31942067)

  • 21. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator.
    Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF
    J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for inhibition of an archaeal CRISPR-Cas type I-D large subunit by an anti-CRISPR protein.
    Manav MC; Van LB; Lin J; Fuglsang A; Peng X; Brodersen DE
    Nat Commun; 2020 Nov; 11(1):5993. PubMed ID: 33239638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein.
    Bhoobalan-Chitty Y; Johansen TB; Di Cianni N; Peng X
    Cell; 2019 Oct; 179(2):448-458.e11. PubMed ID: 31564454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence.
    Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF
    Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease.
    Binder SC; Schneberger N; Schmitz M; Engeser M; Geyer M; Rouillon C; Hagelueken G
    Nucleic Acids Res; 2024 Sep; 52(17):10520-10532. PubMed ID: 39166476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tolerance of Sulfolobus SMV1 virus to the immunity of I-A and III-B CRISPR-Cas systems in Sulfolobus islandicus.
    Guo T; Han W; She Q
    RNA Biol; 2019 Apr; 16(4):549-556. PubMed ID: 29629622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Membrane-Associated DHH-DHHA1 Nuclease Degrades Type III CRISPR Second Messenger.
    Zhao R; Yang Y; Zheng F; Zeng Z; Feng W; Jin X; Wang J; Yang K; Liang YX; She Q; Han W
    Cell Rep; 2020 Sep; 32(11):108133. PubMed ID: 32937129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antiviral signalling by a cyclic nucleotide activated CRISPR protease.
    Rouillon C; Schneberger N; Chi H; Blumenstock K; Da Vela S; Ackermann K; Moecking J; Peter MF; Boenigk W; Seifert R; Bode BE; Schmid-Burgk JL; Svergun D; Geyer M; White MF; Hagelueken G
    Nature; 2023 Feb; 614(7946):168-174. PubMed ID: 36423657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system.
    Zhang D; Du L; Gao H; Yuan C; Lin Z
    Nucleic Acids Res; 2024 Aug; 52(14):8419-8430. PubMed ID: 38967023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma.
    Koonin EV; Makarova KS
    ACS Chem Biol; 2018 Feb; 13(2):309-312. PubMed ID: 28937734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism.
    DeWerff SJ; Bautista MA; Pauly M; Zhang C; Whitaker RJ
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The CRISPR effector Cam1 mediates membrane depolarization for phage defence.
    Baca CF; Yu Y; Rostøl JT; Majumder P; Patel DJ; Marraffini LA
    Nature; 2024 Jan; 625(7996):797-804. PubMed ID: 38200316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of Csx1-cOA
    Molina R; Stella S; Feng M; Sofos N; Jauniskis V; Pozdnyakova I; López-Méndez B; She Q; Montoya G
    Nat Commun; 2019 Sep; 10(1):4302. PubMed ID: 31541109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular basis for cA6 synthesis by a type III-A CRISPR-Cas enzyme and its conversion to cA4 production.
    Goswami HN; Ahmadizadeh F; Wang B; Addo-Yobo D; Zhao Y; Whittington AC; He H; Terns MP; Li H
    Nucleic Acids Res; 2024 Sep; 52(17):10619-10629. PubMed ID: 38989619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b.
    He F; Vestergaard G; Peng W; She Q; Peng X
    Nucleic Acids Res; 2017 Feb; 45(4):1902-1913. PubMed ID: 27980065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis of stepwise cyclic tetra-adenylate cleavage by the type III CRISPR ring nuclease Crn1/Sso2081.
    Du L; Zhang D; Luo Z; Lin Z
    Nucleic Acids Res; 2023 Mar; 51(5):2485-2495. PubMed ID: 36807980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families.
    Hoikkala V; Graham S; White MF
    Nucleic Acids Res; 2024 Jul; 52(12):7129-7141. PubMed ID: 38808661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate selectivity and catalytic activation of the type III CRISPR ancillary nuclease Can2.
    Jungfer K; Sigg A; Jinek M
    Nucleic Acids Res; 2024 Jan; 52(1):462-473. PubMed ID: 38033326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.
    Heler R; Wright AV; Vucelja M; Bikard D; Doudna JA; Marraffini LA
    Mol Cell; 2017 Jan; 65(1):168-175. PubMed ID: 28017588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.