These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31942067)

  • 41. Stable maintenance of the rudivirus SIRV3 in a carrier state in Sulfolobus islandicus despite activation of the CRISPR-Cas immune response by a second virus SMV1.
    Papathanasiou P; Erdmann S; Leon-Sobrino C; Sharma K; Urlaub H; Garrett RA; Peng X
    RNA Biol; 2019 Apr; 16(4):557-565. PubMed ID: 30146914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus.
    Peng W; Li H; Hallstrøm S; Peng N; Liang YX; She Q
    RNA Biol; 2013 May; 10(5):738-48. PubMed ID: 23392249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of cyclic oligoadenylate synthesis in a type III CRISPR system.
    Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF
    Elife; 2018 Jul; 7():. PubMed ID: 29963983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system.
    Pan S; Li Q; Deng L; Jiang S; Jin X; Peng N; Liang Y; She Q; Li Y
    RNA Biol; 2019 Sep; 16(9):1166-1178. PubMed ID: 31096876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Type III CRISPR-Cas: beyond the Cas10 effector complex.
    Stella G; Marraffini L
    Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers.
    Zhang Z; Pan S; Liu T; Li Y; Peng N
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity.
    He F; Bhoobalan-Chitty Y; Van LB; Kjeldsen AL; Dedola M; Makarova KS; Koonin EV; Brodersen DE; Peng X
    Nat Microbiol; 2018 Apr; 3(4):461-469. PubMed ID: 29507349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease.
    Sheppard NF; Glover CV; Terns RM; Terns MP
    RNA; 2016 Feb; 22(2):216-24. PubMed ID: 26647461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus.
    Erdmann S; Le Moine Bauer S; Garrett RA
    Mol Microbiol; 2014 Mar; 91(5):900-17. PubMed ID: 24433295
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins.
    Jia N; Patel DJ
    Nat Rev Mol Cell Biol; 2021 Aug; 22(8):563-579. PubMed ID: 34089013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity.
    Foster K; Grüschow S; Bailey S; White MF; Terns MP
    Nucleic Acids Res; 2020 May; 48(8):4418-4434. PubMed ID: 32198888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
    Bondy-Denomy J; Garcia B; Strum S; Du M; Rollins MF; Hidalgo-Reyes Y; Wiedenheft B; Maxwell KL; Davidson AR
    Nature; 2015 Oct; 526(7571):136-9. PubMed ID: 26416740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diversified local CRISPR-Cas immunity to viruses of Sulfolobus islandicus.
    Pauly MD; Bautista MA; Black JA; Whitaker RJ
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180093. PubMed ID: 30905292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Classification and evolution of type II CRISPR-Cas systems.
    Chylinski K; Makarova KS; Charpentier E; Koonin EV
    Nucleic Acids Res; 2014 Jun; 42(10):6091-105. PubMed ID: 24728998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ribosomal stalk-captured CARF-RelE ribonuclease inhibits translation following CRISPR signaling.
    Mogila I; Tamulaitiene G; Keda K; Timinskas A; Ruksenaite A; Sasnauskas G; Venclovas Č; Siksnys V; Tamulaitis G
    Science; 2023 Dec; 382(6674):1036-1041. PubMed ID: 38033086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular basis for inhibition of type III-B CRISPR-Cas by an archaeal viral anti-CRISPR protein.
    Lin J; Alfastsen L; Bhoobalan-Chitty Y; Peng X
    Cell Host Microbe; 2023 Nov; 31(11):1837-1849.e5. PubMed ID: 37909049
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence.
    Athukoralage JS; White MF
    RNA; 2021 May; 27(8):855-67. PubMed ID: 33986148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interference Requirements of Type III CRISPR-Cas Systems from Thermus thermophilus.
    Karneyeva K; Kolesnik M; Livenskyi A; Zgoda V; Zubarev V; Trofimova A; Artamonova D; Ispolatov Y; Severinov K
    J Mol Biol; 2024 Mar; 436(6):168448. PubMed ID: 38266982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus.
    Manica A; Schleper C
    RNA Biol; 2013 May; 10(5):671-8. PubMed ID: 23535277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus.
    Liu T; Liu Z; Ye Q; Pan S; Wang X; Li Y; Peng W; Liang Y; She Q; Peng N
    Nucleic Acids Res; 2017 Sep; 45(15):8978-8992. PubMed ID: 28911114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.