These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 31942067)
61. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217 [TBL] [Abstract][Full Text] [Related]
62. Cyclic Tetra-Adenylate (cA Charbonneau AA; Eckert DM; Gauvin CC; Lintner NG; Lawrence CM Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944496 [TBL] [Abstract][Full Text] [Related]
63. Second Messenger cA Jia N; Jones R; Sukenick G; Patel DJ Mol Cell; 2019 Sep; 75(5):933-943.e6. PubMed ID: 31326272 [TBL] [Abstract][Full Text] [Related]
64. Structural and mechanistic insights into the CRISPR inhibition of AcrIF7. Kim I; Koo J; An SY; Hong S; Ka D; Kim EH; Bae E; Suh JY Nucleic Acids Res; 2020 Sep; 48(17):9959-9968. PubMed ID: 32810226 [TBL] [Abstract][Full Text] [Related]
65. Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition. Kazlauskiene M; Tamulaitis G; Kostiuk G; Venclovas Č; Siksnys V Mol Cell; 2016 Apr; 62(2):295-306. PubMed ID: 27105119 [TBL] [Abstract][Full Text] [Related]
66. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. Foster K; Kalter J; Woodside W; Terns RM; Terns MP RNA Biol; 2019 Apr; 16(4):449-460. PubMed ID: 29995577 [TBL] [Abstract][Full Text] [Related]
67. Shoot the Messenger! A New Phage Weapon to Neutralize the Type III CRISPR Immune Response. Shilton AK; Marraffini LA Mol Cell; 2020 May; 78(4):568-569. PubMed ID: 32442502 [TBL] [Abstract][Full Text] [Related]
68. Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins. Yang L; Zhang Y; Yin P; Feng Y RNA Biol; 2021 Nov; 18(sup2):562-573. PubMed ID: 34606423 [TBL] [Abstract][Full Text] [Related]
69. Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Niewoehner O; Jinek M; Doudna JA Nucleic Acids Res; 2014 Jan; 42(2):1341-53. PubMed ID: 24150936 [TBL] [Abstract][Full Text] [Related]
70. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186 [TBL] [Abstract][Full Text] [Related]
71. Genome editing in archaeal viruses and endogenous viral protein purification. Alfastsen L; Peng X; Bhoobalan-Chitty Y STAR Protoc; 2021 Dec; 2(4):100791. PubMed ID: 34585154 [TBL] [Abstract][Full Text] [Related]
72. Functional and Phylogenetic Diversity of Cas10 Proteins. Wiegand T; Wilkinson R; Santiago-Frangos A; Lynes M; Hatzenpichler R; Wiedenheft B CRISPR J; 2023 Apr; 6(2):152-162. PubMed ID: 36912817 [TBL] [Abstract][Full Text] [Related]
73. Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Wang L; Mo CY; Wasserman MR; Rostøl JT; Marraffini LA; Liu S Mol Cell; 2019 Jan; 73(2):278-290.e4. PubMed ID: 30503774 [TBL] [Abstract][Full Text] [Related]
74. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012 [TBL] [Abstract][Full Text] [Related]
75. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Han W; Li Y; Deng L; Feng M; Peng W; Hallstrøm S; Zhang J; Peng N; Liang YX; White MF; She Q Nucleic Acids Res; 2017 Feb; 45(4):1983-1993. PubMed ID: 27986854 [TBL] [Abstract][Full Text] [Related]
76. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Smalakyte D; Kazlauskiene M; F Havelund J; Rukšėnaitė A; Rimaite A; Tamulaitiene G; Færgeman NJ; Tamulaitis G; Siksnys V Nucleic Acids Res; 2020 Sep; 48(16):9204-9217. PubMed ID: 32766806 [TBL] [Abstract][Full Text] [Related]
77. SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation. Steens JA; Zhu Y; Taylor DW; Bravo JPK; Prinsen SHP; Schoen CD; Keijser BJF; Ossendrijver M; Hofstra LM; Brouns SJJ; Shinkai A; van der Oost J; Staals RHJ Nat Commun; 2021 Aug; 12(1):5033. PubMed ID: 34413302 [TBL] [Abstract][Full Text] [Related]
79. Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR-Cas complex revealed by cryo-EM. Zhang K; Wang S; Li S; Zhu Y; Pintilie GD; Mou TC; Schmid MF; Huang Z; Chiu W Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7176-7182. PubMed ID: 32170016 [TBL] [Abstract][Full Text] [Related]
80. Cmr3 regulates the suppression on cyclic oligoadenylate synthesis by tag complementarity in a Type III-B CRISPR-Cas system. Guo T; Zheng F; Zeng Z; Yang Y; Li Q; She Q; Han W RNA Biol; 2019 Oct; 16(10):1513-1520. PubMed ID: 31298604 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]