These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 31942665)
1. Simulation of the impact of the emergency control measures on the reduction of air pollutants: a case study of APEC blue. Tong P; Zhang Q; Lin H; Jian X; Wang X Environ Monit Assess; 2020 Jan; 192(2):116. PubMed ID: 31942665 [TBL] [Abstract][Full Text] [Related]
2. A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. Zhang Q; Tong P; Liu M; Lin H; Yun X; Zhang H; Tao W; Liu J; Wang S; Tao S; Wang X J Environ Manage; 2020 Jan; 253():109751. PubMed ID: 31675594 [TBL] [Abstract][Full Text] [Related]
3. "APEC blue"--The effects and implications of joint pollution prevention and control program. Wang H; Zhao L; Xie Y; Hu Q Sci Total Environ; 2016 May; 553():429-438. PubMed ID: 26930315 [TBL] [Abstract][Full Text] [Related]
4. Air quality improvement and health benefit of PM Guo X; Zhao L; Chen D; Jia Y; Zhao N; Liu W; Cheng S Environ Sci Pollut Res Int; 2018 Nov; 25(32):32709-32720. PubMed ID: 30244442 [TBL] [Abstract][Full Text] [Related]
5. Impact of emission control on PM2.5 and the chemical composition change in Beijing-Tianjin-Hebei during the APEC summit 2014. Wen W; Cheng S; Chen X; Wang G; Li S; Wang X; Liu X Environ Sci Pollut Res Int; 2016 Mar; 23(5):4509-21. PubMed ID: 26514566 [TBL] [Abstract][Full Text] [Related]
6. Mortality benefits of vigorous air quality improvement interventions during the periods of APEC Blue and Parade Blue in Beijing, China. Lin H; Liu T; Fang F; Xiao J; Zeng W; Li X; Guo L; Tian L; Schootman M; Stamatakis KA; Qian Z; Ma W Environ Pollut; 2017 Jan; 220(Pt A):222-227. PubMed ID: 27650964 [TBL] [Abstract][Full Text] [Related]
7. Impact of emissions controls on ambient carbonyls during the Asia-Pacific Economic Cooperation summit in Beijing, China. Zhou X; Tan J; Qin J; Hu J; Duan J; Chen R Environ Sci Pollut Res Int; 2019 Apr; 26(12):11875-11887. PubMed ID: 30820915 [TBL] [Abstract][Full Text] [Related]
8. [Assessment of Emergency Emission Reduction Effect During the Heavy Air Pollution Episodes in Beijing, Tianjin, Hebei, and Its Surrounding Area("2+26" Cities) from October to December 2019]. Zhu YY; Gao YX; Wang W; Lu N; Xu R; Liu B; Li JJ Huan Jing Ke Xue; 2020 Oct; 41(10):4402-4412. PubMed ID: 33124372 [TBL] [Abstract][Full Text] [Related]
9. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games. Xu R; Tang G; Wang Y; Tie X Chemosphere; 2016 Sep; 159():647-658. PubMed ID: 27355197 [TBL] [Abstract][Full Text] [Related]
10. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074 [TBL] [Abstract][Full Text] [Related]
11. Relative impact of emissions controls and meteorology on air pollution mitigation associated with the Asia-Pacific Economic Cooperation (APEC) conference in Beijing, China. Wang Y; Zhang Y; Schauer JJ; de Foy B; Guo B; Zhang Y Sci Total Environ; 2016 Nov; 571():1467-76. PubMed ID: 27453134 [TBL] [Abstract][Full Text] [Related]
12. Impact of emission control on regional air quality: an observational study of air pollutants before, during and after the Beijing Olympic Games. Wang S; Gao J; Zhang Y; Zhang J; Cha F; Wang T; Ren C; Wang W J Environ Sci (China); 2014 Jan; 26(1):175-80. PubMed ID: 24649704 [TBL] [Abstract][Full Text] [Related]
13. Ground ozone concentrations over Beijing from 2004 to 2015: Variation patterns, indicative precursors and effects of emission-reduction. Cheng N; Chen Z; Sun F; Sun R; Dong X; Xie X; Xu C Environ Pollut; 2018 Jun; 237():262-274. PubMed ID: 29494920 [TBL] [Abstract][Full Text] [Related]
14. Regional collaboration to simultaneously mitigate PM Duan W; Wang X; Cheng S; Wang R Sci Total Environ; 2022 May; 820():153309. PubMed ID: 35065107 [TBL] [Abstract][Full Text] [Related]
15. Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): A case study. Bei N; Zhao L; Wu J; Li X; Feng T; Li G Environ Pollut; 2018 Mar; 234():429-438. PubMed ID: 29202421 [TBL] [Abstract][Full Text] [Related]
16. Impacts of the differences in PM Cao J; Qiu X; Peng L; Gao J; Wang F; Yan X Chemosphere; 2022 Jun; 297():134179. PubMed ID: 35247451 [TBL] [Abstract][Full Text] [Related]
17. Optimization of a NO Ding D; Xing J; Wang S; Dong Z; Zhang F; Liu S; Hao J Environ Sci Technol; 2022 Jan; 56(2):739-749. PubMed ID: 34962805 [TBL] [Abstract][Full Text] [Related]
18. Reduction in population exposure to PM Xie Y; Zhao B; Zhao Y; Luo Q; Wang S; Zhao B; Bai S Environ Pollut; 2017 Jun; 225():338-345. PubMed ID: 28284555 [TBL] [Abstract][Full Text] [Related]
19. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
20. Regional joint PM Wang J; Gao A; Li S; Liu Y; Zhao W; Wang P; Zhang H J Environ Sci (China); 2023 Aug; 130():75-84. PubMed ID: 37032044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]