BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31942798)

  • 21. Modulating the Charge-Transfer Step of a p-n Heterojunction with Nitrogen-Doped Carbon: A Promising Strategy To Improve Photocatalytic Performance.
    Yuan Y; Sun L; Zeng S; Zhan W; Wang X; Han X
    Chemistry; 2020 Jan; 26(4):921-926. PubMed ID: 31693235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amorphous Alloy Architectures in Pore Walls: Mesoporous Amorphous NiCoB Alloy Spheres with Controlled Compositions
    Kang Y; Jiang B; Yang J; Wan Z; Na J; Li Q; Li H; Henzie J; Sakka Y; Yamauchi Y; Asahi T
    ACS Nano; 2020 Dec; 14(12):17224-17232. PubMed ID: 33315390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane.
    Yang L; Luo W; Cheng G
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating the origin of catalytic activity of nitrogen-doped carbon coated nickel toward electrochemical reduction of CO
    Zeng Q; Yang G; Zhang Q; Liu Z; Dang C; Qin B; Peng F
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):132-142. PubMed ID: 37399749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports.
    Feng Z; Chen X; Bai X
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36172-36185. PubMed ID: 32556981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafine Pd Nanoparticles Supported on Soft Nitriding Porous Carbon for Hydrogen Production from Hydrolytic Dehydrogenation of Dimethyl Amine-Borane.
    Wen Z; Fu Q; Wu J; Fan G
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32824554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction.
    Perini L; Durante C; Favaro M; Perazzolo V; Agnoli S; Schneider O; Granozzi G; Gennaro A
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1170-9. PubMed ID: 25525718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One dimensional hierarchical nanoflakes with nickel-immobilization for high performance catalysis and histidine-rich protein adsorption.
    Wang N; Wen Q; Liu L; Xu J; Zheng J; Yue M; Asiri AM; Marwani HM; Zhang M
    Dalton Trans; 2019 Aug; 48(30):11308-11316. PubMed ID: 31271177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple and straightforward strategy for synthesis of N,P co-doped porous carbon: an efficient support for Rh nanoparticles for dehydrogenation of ammonia borane and catalytic application.
    Luo W; Zhao X; Cheng W; Zhang Y; Wang Y; Fan G
    Nanoscale Adv; 2020 Apr; 2(4):1685-1693. PubMed ID: 36132330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade.
    Xu X; Li Y; Gong Y; Zhang P; Li H; Wang Y
    J Am Chem Soc; 2012 Oct; 134(41):16987-90. PubMed ID: 23030399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile synthesis of metal nanoparticles decorated magnetic hierarchical carbon microtubes with polydopamine-derived carbon layer for catalytic applications.
    Miao T; Zheng J; Wang J; Xu J; Alharbi NS; Zhang M
    Dalton Trans; 2018 Nov; 47(46):16578-16586. PubMed ID: 30417920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon.
    Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S
    Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dehydrogenation of ammonia-borane by cationic Pd(II) and Ni(II) complexes in a nitromethane medium: hydrogen release and spent fuel characterization.
    Kim SK; Hong SA; Son HJ; Han WS; Michalak A; Hwang SJ; Kang SO
    Dalton Trans; 2015 Apr; 44(16):7373-81. PubMed ID: 25799252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane.
    Metin O; Mazumder V; Ozkar S; Sun S
    J Am Chem Soc; 2010 Feb; 132(5):1468-9. PubMed ID: 20078051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneous dehydrocoupling of amine-borane adducts by skeletal nickel catalysts.
    Robertson AP; Suter R; Chabanne L; Whittell GR; Manners I
    Inorg Chem; 2011 Dec; 50(24):12680-91. PubMed ID: 22103654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation.
    Zhu Y; Yu G; Yang J; Yuan M; Xu D; Dong Z
    J Colloid Interface Sci; 2019 Jan; 533():259-267. PubMed ID: 30170277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation.
    Deng M; Yang A; Ma J; Yang C; Cao T; Yang S; Yao M; Liu F; Wang X; Cao J
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18550-18560. PubMed ID: 35412790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafine Pd nanoparticles immobilized on N-doped hollow carbon nanospheres with superior catalytic performance for the selective oxidation of 5-hydroxymethylfurfural and hydrogenation of nitroarenes.
    Zhu Y; Wang F; Fan M; Zhu Q; Dong Z
    J Colloid Interface Sci; 2019 Oct; 553():588-597. PubMed ID: 31238229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid.
    Assaud L; Monyoncho E; Pitzschel K; Allagui A; Petit M; Hanbücken M; Baranova EA; Santinacci L
    Beilstein J Nanotechnol; 2014; 5():162-72. PubMed ID: 24605281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.