These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 31942980)
21. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes. Roder AC; Stock SP J Invertebr Pathol; 2018 Mar; 153():65-74. PubMed ID: 29458072 [TBL] [Abstract][Full Text] [Related]
22. OxyR is required for oxidative stress resistance of the entomopathogenic bacterium Bientz V; Lanois A; Ginibre N; Pagès S; Ogier JC; George S; Rialle S; Brillard J Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39058385 [No Abstract] [Full Text] [Related]
23. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
24. High Levels of the Xenorhabdus nematophila Transcription Factor Lrp Promote Mutualism with the Steinernema carpocapsae Nematode Host. Cao M; Patel T; Rickman T; Goodrich-Blair H; Hussa EA Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389546 [No Abstract] [Full Text] [Related]
25. Gut microbiota of Tenebrio molitor and their response to environmental change. Jung J; Heo A; Park YW; Kim YJ; Koh H; Park W J Microbiol Biotechnol; 2014 Jul; 24(7):888-97. PubMed ID: 24861345 [TBL] [Abstract][Full Text] [Related]
26. Fitness costs of symbiont switching using entomopathogenic nematodes as a model. McMullen JG; Peterson BF; Forst S; Blair HG; Stock SP BMC Evol Biol; 2017 Apr; 17(1):100. PubMed ID: 28412935 [TBL] [Abstract][Full Text] [Related]
27. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii. Sajnaga E; Kazimierczak W; Skowronek M; Lis M; Skrzypek T; Waśko A Arch Microbiol; 2018 Nov; 200(9):1307-1316. PubMed ID: 29946739 [TBL] [Abstract][Full Text] [Related]
28. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae). Li X; Liu Q; Lewis EE; Tarasco E Parasitol Res; 2016 Dec; 115(12):4485-4494. PubMed ID: 27637224 [TBL] [Abstract][Full Text] [Related]
29. Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence. Spence KO; Stevens GN; Arimoto H; Ruiz-Vega J; Kaya HK; Lewis EE J Invertebr Pathol; 2011 Feb; 106(2):268-73. PubMed ID: 21047513 [TBL] [Abstract][Full Text] [Related]
30. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. Genta FA; Dillon RJ; Terra WR; Ferreira C J Insect Physiol; 2006 Jun; 52(6):593-601. PubMed ID: 16600286 [TBL] [Abstract][Full Text] [Related]
31. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Sicard M; Brugirard-Ricaud K; Pagès S; Lanois A; Boemare NE; Brehélin M; Givaudan A Appl Environ Microbiol; 2004 Nov; 70(11):6473-80. PubMed ID: 15528508 [TBL] [Abstract][Full Text] [Related]
32. Steinernema feltiae: ammonia triggers the emergence of their infective juveniles. San-Blas E; Gowen SR; Pembroke B Exp Parasitol; 2008 May; 119(1):180-5. PubMed ID: 18316080 [TBL] [Abstract][Full Text] [Related]
33. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Sicard M; Ferdy JB; Pagès S; Le Brun N; Godelle B; Boemare N; Moulia C J Evol Biol; 2004 Sep; 17(5):985-93. PubMed ID: 15312071 [TBL] [Abstract][Full Text] [Related]
34. Mechanisms of specificity of association between the nematode Steinernema scapterisci and its symbiotic bacterium. Grewal PS; Matsuura M; Converse V Parasitology; 1997 May; 114 ( Pt 5)():483-8. PubMed ID: 9149419 [TBL] [Abstract][Full Text] [Related]
35. A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (gamma-Proteobacteria: Enterobacteriaceae). Lee MM; Stock SP Syst Parasitol; 2010 Sep; 77(1):1-12. PubMed ID: 20700692 [TBL] [Abstract][Full Text] [Related]
36. Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interaction. Sicard M; Le Brun N; Pages S; Godelle B; Boemare N; Moulia C Parasitol Res; 2003 Dec; 91(6):520-4. PubMed ID: 14557877 [TBL] [Abstract][Full Text] [Related]
37. First report of the symbiotic bacterium Xenorhabdus indica associated with the entomopathogenic nematode Steinernema yirgalemense. Ferreira T; van Reenen CA; Tailliez P; Pagès S; Malan AP; Dicks LM J Helminthol; 2016 Jan; 90(1):108-12. PubMed ID: 25119819 [TBL] [Abstract][Full Text] [Related]
38. First Record of the Entomopathogenic Nematode Özdemir E; Bayram Ş; Susurluk IA Insects; 2020 Feb; 11(3):. PubMed ID: 32106597 [TBL] [Abstract][Full Text] [Related]
39. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Orr D; Divinagracia E; McGraw J; Dorff K; Forst S Appl Environ Microbiol; 2015 Jan; 81(2):754-64. PubMed ID: 25398871 [TBL] [Abstract][Full Text] [Related]
40. Xenorhabdus nematophila bacteria shift from mutualistic to virulent Lrp-dependent phenotypes within the receptacles of Steinernema carpocapsae insect-infective stage nematodes. Cao M; Goodrich-Blair H Environ Microbiol; 2020 Dec; 22(12):5433-5449. PubMed ID: 33078552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]