BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31943070)

  • 1. DNA targeting by Clostridium cellulolyticum CRISPR-Cas9 Type II-C system.
    Fedorova I; Arseniev A; Selkova P; Pobegalov G; Goryanin I; Vasileva A; Musharova O; Abramova M; Kazalov M; Zyubko T; Artamonova T; Artamonova D; Shmakov S; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2020 Feb; 48(4):2026-2034. PubMed ID: 31943070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PpCas9 from Pasteurella pneumotropica - a compact Type II-C Cas9 ortholog active in human cells.
    Fedorova I; Vasileva A; Selkova P; Abramova M; Arseniev A; Pobegalov G; Kazalov M; Musharova O; Goryanin I; Artamonova D; Zyubko T; Shmakov S; Artamonova T; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2020 Dec; 48(21):12297-12309. PubMed ID: 33152077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
    Hirano S; Nishimasu H; Ishitani R; Nureki O
    Mol Cell; 2016 Mar; 61(6):886-94. PubMed ID: 26990991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into a high fidelity variant of SpCas9.
    Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z
    Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
    Babu K; Kathiresan V; Kumari P; Newsom S; Parameshwaran HP; Chen X; Liu J; Qin PZ; Rajan R
    Biochemistry; 2021 Dec; 60(49):3783-3800. PubMed ID: 34757726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL; O'Reilly D; Rohilla KJ; Damha MJ; Gagnon KT
    Nucleic Acid Ther; 2019 Jun; 29(3):136-147. PubMed ID: 30990769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered dual selection for directed evolution of SpCas9 PAM specificity.
    Goldberg GW; Spencer JM; Giganti DO; Camellato BR; Agmon N; Ichikawa DM; Boeke JD; Noyes MB
    Nat Commun; 2021 Jan; 12(1):349. PubMed ID: 33441553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.
    Anders C; Bargsten K; Jinek M
    Mol Cell; 2016 Mar; 61(6):895-902. PubMed ID: 26990992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M; Zuo Z; Yin Z; Gu J
    J Chem Inf Model; 2022 Jun; 62(12):3057-3066. PubMed ID: 35666156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9.
    Hibshman GN; Bravo JPK; Hooper MM; Dangerfield TL; Zhang H; Finkelstein IJ; Johnson KA; Taylor DW
    Nat Commun; 2024 Apr; 15(1):3663. PubMed ID: 38688943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM.
    Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S
    Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
    Gasiunas G; Young JK; Karvelis T; Kazlauskas D; Urbaitis T; Jasnauskaite M; Grusyte MM; Paulraj S; Wang PH; Hou Z; Dooley SK; Cigan M; Alarcon C; Chilcoat ND; Bigelyte G; Curcuru JL; Mabuchi M; Sun Z; Fuchs RT; Schildkraut E; Weigele PR; Jack WE; Robb GB; Venclovas Č; Siksnys V
    Nat Commun; 2020 Nov; 11(1):5512. PubMed ID: 33139742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why Does the E1219V Mutation Expand T-Rich PAM Recognition in Cas9 from
    Bhattacharya S; Satpati P
    J Chem Inf Model; 2024 Apr; 64(8):3237-3247. PubMed ID: 38600752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase.
    Xu T; Li Y; Shi Z; Hemme CL; Li Y; Zhu Y; Van Nostrand JD; He Z; Zhou J
    Appl Environ Microbiol; 2015 Jul; 81(13):4423-31. PubMed ID: 25911483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.
    Halat M; Klimek-Chodacka M; Orleanska J; Baranska M; Baranski R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly specific SpCas9 variant is identified by in vivo screening in yeast.
    Casini A; Olivieri M; Petris G; Montagna C; Reginato G; Maule G; Lorenzin F; Prandi D; Romanel A; Demichelis F; Inga A; Cereseto A
    Nat Biotechnol; 2018 Mar; 36(3):265-271. PubMed ID: 29431739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.