These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31943629)

  • 1. Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions.
    Love C; Steinkühler J; Gonzales DT; Yandrapalli N; Robinson T; Dimova R; Tang TD
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5950-5957. PubMed ID: 31943629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Controlled Coacervate-Membrane Interactions within Liposomes.
    Last MGF; Deshpande S; Dekker C
    ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
    Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E
    Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia.
    Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z
    J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonspherical Coacervate Shapes in an Enzyme-Driven Active System.
    Spoelstra WK; van der Sluis EO; Dogterom M; Reese L
    Langmuir; 2020 Mar; 36(8):1956-1964. PubMed ID: 31995710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D
    Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Protocells Based on Coacervate-Templated Fatty Acid Vesicles Combine Improved Membrane Stability with Functional Interior Protocytoplasm.
    Lee J; Pir Cakmak F; Booth R; Keating CD
    Small; 2024 Oct; ():e2406671. PubMed ID: 39402790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible photocontrol of DNA coacervation.
    Lafon S; Martin N
    Methods Enzymol; 2021; 646():329-351. PubMed ID: 33453931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of coacervate-in-coacervate multi-compartment protocells for spatial organization of enzymatic reactions.
    Chen Y; Yuan M; Zhang Y; Liu S; Yang X; Wang K; Liu J
    Chem Sci; 2020 Aug; 11(32):8617-8625. PubMed ID: 34123122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently crosslinked coacervates: immobilization and stabilization of proteins with enhanced enzymatic activity.
    Zhao M; Cho SH; Wu X; Mao J; Vogt BD; Zacharia NS
    Soft Matter; 2024 Oct; 20(38):7623-7633. PubMed ID: 39291470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid Membrane Formation Templated by Coacervate Droplets.
    Pir Cakmak F; Marianelli AM; Keating CD
    Langmuir; 2021 Aug; 37(34):10366-10375. PubMed ID: 34398617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing negative feedback loops in enzymatic coacervate droplets.
    Modi N; Chen S; Adjei INA; Franco BL; Bishop KJM; Obermeyer AC
    Chem Sci; 2023 May; 14(18):4735-4744. PubMed ID: 37181760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal control of coacervate formation within liposomes.
    Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C
    Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
    Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C
    Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling.
    Fraccia TP; Martin N
    Nat Commun; 2023 May; 14(1):2606. PubMed ID: 37160869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmatically Dynamic Microcompartmentation in Coacervate-in-Pickering Emulsion Protocell.
    Chen M; Liu G; Zhang M; Li Y; Hong X; Yang H
    Small; 2023 Mar; 19(10):e2206437. PubMed ID: 36564366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic control over coacervation.
    Nakashima KK; André AAM; Spruijt E
    Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.