These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 31943669)

  • 1. Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model.
    Cahn A; Shoshan A; Sagiv T; Yesharim R; Goshen R; Shalev V; Raz I
    Diabetes Metab Res Rev; 2020 Feb; 36(2):e3252. PubMed ID: 31943669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive models for diabetes mellitus using machine learning techniques.
    Lai H; Huang H; Keshavjee K; Guergachi A; Gao X
    BMC Endocr Disord; 2019 Oct; 19(1):101. PubMed ID: 31615566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.
    Rahimian F; Salimi-Khorshidi G; Payberah AH; Tran J; Ayala Solares R; Raimondi F; Nazarzadeh M; Canoy D; Rahimi K
    PLoS Med; 2018 Nov; 15(11):e1002695. PubMed ID: 30458006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.
    Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y
    PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.
    Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D
    JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse Engineering and Evaluation of Prediction Models for Progression to Type 2 Diabetes: An Application of Machine Learning Using Electronic Health Records.
    Anderson JP; Parikh JR; Shenfeld DK; Ivanov V; Marks C; Church BW; Laramie JM; Mardekian J; Piper BA; Willke RJ; Rublee DA
    J Diabetes Sci Technol; 2015 Dec; 10(1):6-18. PubMed ID: 26685993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the Risk of Inpatient Hypoglycemia With Machine Learning Using Electronic Health Records.
    Ruan Y; Bellot A; Moysova Z; Tan GD; Lumb A; Davies J; van der Schaar M; Rea R
    Diabetes Care; 2020 Jul; 43(7):1504-1511. PubMed ID: 32350021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning approaches improve risk stratification for secondary cardiovascular disease prevention in multiethnic patients.
    Sarraju A; Ward A; Chung S; Li J; Scheinker D; Rodríguez F
    Open Heart; 2021 Oct; 8(2):. PubMed ID: 34667093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes.
    Ravaut M; Harish V; Sadeghi H; Leung KK; Volkovs M; Kornas K; Watson T; Poutanen T; Rosella LC
    JAMA Netw Open; 2021 May; 4(5):e2111315. PubMed ID: 34032855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning model to predict therapeutic inertia in type 2 diabetes using electronic health record data.
    McDaniel CC; Lo-Ciganic WH; Huang J; Chou C
    J Endocrinol Invest; 2024 Jun; 47(6):1419-1433. PubMed ID: 38160431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome - the MADDEC study.
    Hernesniemi JA; Mahdiani S; Tynkkynen JA; Lyytikäinen LP; Mishra PP; Lehtimäki T; Eskola M; Nikus K; Antila K; Oksala N
    Ann Med; 2019 Mar; 51(2):156-163. PubMed ID: 31030570
    [No Abstract]   [Full Text] [Related]  

  • 16. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning for Predicting Micro- and Macrovascular Complications in Individuals With Prediabetes or Diabetes: Retrospective Cohort Study.
    Schallmoser S; Zueger T; Kraus M; Saar-Tsechansky M; Stettler C; Feuerriegel S
    J Med Internet Res; 2023 Feb; 25():e42181. PubMed ID: 36848190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches.
    Han D; Kolli KK; Gransar H; Lee JH; Choi SY; Chun EJ; Han HW; Park SH; Sung J; Jung HO; Min JK; Chang HJ
    J Cardiovasc Comput Tomogr; 2020; 14(2):168-176. PubMed ID: 31570323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting pressure injury using nursing assessment phenotypes and machine learning methods.
    Song W; Kang MJ; Zhang L; Jung W; Song J; Bates DW; Dykes PC
    J Am Med Inform Assoc; 2021 Mar; 28(4):759-765. PubMed ID: 33517452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning-based prediction model for gout in hyperuricemics: a nationwide cohort study.
    Brikman S; Serfaty L; Abuhasira R; Schlesinger N; Bieber A; Rappoport N
    Rheumatology (Oxford); 2024 Sep; 63(9):2411-2417. PubMed ID: 38895877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.