These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31943677)

  • 61. Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting.
    Nguyen HL; Gropp C; Hanikel N; Möckel A; Lund A; Yaghi OM
    ACS Cent Sci; 2022 Jul; 8(7):926-932. PubMed ID: 35912353
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Divide and Conquer: A Novel Dual-Layered Hydrogel for Atmospheric Moisture Harvesting.
    Feng A; Onggowarsito C; Mao S; Qiao GG; Fu Q
    ChemSusChem; 2023 Jul; 16(14):e202300137. PubMed ID: 37019848
    [TBL] [Abstract][Full Text] [Related]  

  • 63. New Composite Water Sorbents CaCl₂-PHTS for Low-Temperature Sorption Heat Storage: Determination of Structural Properties.
    Ristić A; Zabukovec Logar N
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30587775
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight".
    Kim H; Rao SR; Kapustin EA; Narayanan S; Yang S; Furukawa H; Umans AS; Yaghi OM; Wang EN
    Science; 2017 Nov; 358(6366):. PubMed ID: 29170205
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting.
    Nguyen HL; Hanikel N; Lyle SJ; Zhu C; Proserpio DM; Yaghi OM
    J Am Chem Soc; 2020 Feb; 142(5):2218-2221. PubMed ID: 31944678
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel metal-organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples.
    Jia X; Zhao P; Ye X; Zhang L; Wang T; Chen Q; Hou X
    Talanta; 2017 Jul; 169():227-238. PubMed ID: 28411816
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneously Enhanced Hydrophilicity and Stability of a Metal-Organic Framework via Post-Synthetic Modification for Water Vapor Sorption/Desorption.
    Luo TY; Park S; Chen TH; Prerna ; Patel R; Li X; Ilja Siepmann J; Caratzoulas S; Xia Z; Tsapatsis M
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202209034. PubMed ID: 35929949
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pathways to Energy-efficient Water Production from the Atmosphere.
    Feng Y; Wang R; Ge T
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204508. PubMed ID: 36285671
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermoresponsive Amphoteric Metal-Organic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water.
    Ou R; Zhang H; Wei J; Kim S; Wan L; Nguyen NS; Hu Y; Zhang X; Simon GP; Wang H
    Adv Mater; 2018 Jul; ():e1802767. PubMed ID: 29989209
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bioinspired Green Fabricating Design of Multidimensional Surfaces for Atmospheric Water Harvesting.
    Balachandran A; Parayilkalapurackal H; Rajpoot S; Lone S
    ACS Appl Bio Mater; 2023 Jan; 6(1):44-63. PubMed ID: 36580351
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Autonomous atmospheric water seeping MOF matrix.
    Yilmaz G; Meng FL; Lu W; Abed J; Peh CKN; Gao M; Sargent EH; Ho GW
    Sci Adv; 2020 Oct; 6(42):. PubMed ID: 33067237
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting.
    Almassad HA; Abaza RI; Siwwan L; Al-Maythalony B; Cordova KE
    Nat Commun; 2022 Aug; 13(1):4873. PubMed ID: 35986024
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Record-Setting Sorbents for Reversible Water Uptake by Systematic Anion Exchanges in Metal-Organic Frameworks.
    Rieth AJ; Wright AM; Skorupskii G; Mancuso JL; Hendon CH; Dincă M
    J Am Chem Soc; 2019 Sep; 141(35):13858-13866. PubMed ID: 31398286
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An Interfacial Solar-Driven Atmospheric Water Generator Based on a Liquid Sorbent with Simultaneous Adsorption-Desorption.
    Qi H; Wei T; Zhao W; Zhu B; Liu G; Wang P; Lin Z; Wang X; Li X; Zhang X; Zhu J
    Adv Mater; 2019 Oct; 31(43):e1903378. PubMed ID: 31523873
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Superelastic Graphene Nanocomposite for High Cycle-Stability Water Capture-Release under Sunlight.
    Chen B; Zhao X; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(17):15616-15622. PubMed ID: 30964254
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification.
    Zhang Y; Wu L; Wang X; Yu J; Ding B
    Nat Commun; 2020 Jul; 11(1):3302. PubMed ID: 32620818
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Probing the Sorption of Perfluorooctanesulfonate Using Mesoporous Metal-Organic Frameworks from Aqueous Solutions.
    Barpaga D; Zheng J; Han KS; Soltis JA; Shutthanandan V; Basuray S; McGrail BP; Chatterjee S; Motkuri RK
    Inorg Chem; 2019 Jul; 58(13):8339-8346. PubMed ID: 31067043
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting.
    Li T; Wu M; Xu J; Du R; Yan T; Wang P; Bai Z; Wang R; Wang S
    Nat Commun; 2022 Nov; 13(1):6771. PubMed ID: 36351950
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Harvesting Water from Air: Using Anhydrous Salt with Sunlight.
    Li R; Shi Y; Shi L; Alsaedi M; Wang P
    Environ Sci Technol; 2018 May; 52(9):5398-5406. PubMed ID: 29608281
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications.
    Entezari A; Esan OC; Yan X; Wang R; An L
    Adv Mater; 2023 Oct; 35(40):e2210957. PubMed ID: 36869587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.