These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31943746)

  • 1. Predator density modifies mosquito regulation in increasingly complex environments.
    Buxton M; Cuthbert RN; Dalu T; Nyamukondiwa C; Wasserman RJ
    Pest Manag Sci; 2020 Jun; 76(6):2079-2086. PubMed ID: 31943746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes.
    Buxton M; Nyamukondiwa C; Dalu T; Cuthbert RN; Wasserman RJ
    Parasit Vectors; 2020 Dec; 13(1):604. PubMed ID: 33261665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water depth-dependent notonectid predatory impacts across larval mosquito ontogeny.
    Dalal A; Cuthbert RN; Dick JT; Gupta S
    Pest Manag Sci; 2019 Oct; 75(10):2610-2617. PubMed ID: 30729643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey preferences of notonectids towards larval mosquitoes across prey ontogeny and search area.
    Dalal A; Cuthbert RN; Dick JT; Gupta S
    Pest Manag Sci; 2020 Feb; 76(2):609-616. PubMed ID: 31313450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-Population Similarities and Differences in Predation Efficiency of a Mosquito Natural Enemy.
    Cuthbert RN; Dalu T; Wasserman RJ; Weyl OLF; Froneman PW; Callaghan A; Dick JTA
    J Med Entomol; 2020 Nov; 57(6):1983-1987. PubMed ID: 32459349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Interaction Strengths and Prey Preferences Across Larval Mosquito Ontogeny by a Cohabiting Predatory Midge.
    Cuthbert RN; Callaghan A; Dick JTA
    J Med Entomol; 2019 Sep; 56(5):1428-1432. PubMed ID: 31038180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of habitat complexity on the prey mortality in IGP system involving insect predators (Heteroptera) and prey (Diptera): Implications in biological control.
    Brahma S; Sharma D; Banerjee S; Saha GK; Aditya G
    PLoS One; 2022; 17(3):e0264840. PubMed ID: 35286333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour.
    South J; Botha TL; Wolmarans NJ; Wepener V; Weyl OLF
    Ecotoxicology; 2019 Sep; 28(7):771-780. PubMed ID: 31278447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habitat complexity influences cascading effects of multiple predators.
    Grabowski JH; Hughes AR; Kimbro DL
    Ecology; 2008 Dec; 89(12):3413-22. PubMed ID: 19137947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of habitat complexity on the predation of Buenoa fuscipennis (Heteroptera: Notonectidae) on mosquito immature stages and alternative prey.
    Fischer S; Zanotti G; Castro A; Quiroga L; Vargas DV
    J Vector Ecol; 2013 Dec; 38(2):215-23. PubMed ID: 24581348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of indigenous larvivorous fishes against Culex quinquefasciatus in the presence of alternative prey: implications for biological control.
    Aditya G; Pal S; Saha N; Saha G
    J Vector Borne Dis; 2012 Dec; 49(4):217-25. PubMed ID: 23428520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disentangling the nonlinear effects of habitat complexity on functional responses.
    Mocq J; Soukup PR; Näslund J; Boukal DS
    J Anim Ecol; 2021 Jun; 90(6):1525-1537. PubMed ID: 33713437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of the Alternative Prey, Paramecium caudatum (Peniculida: Parameciidae), on the Predation of Culex pipiens (Diptera: Culicidae) by the Copepods Macrocyclops albidus and Megacyclops viridis (Cyclopoida: Cyclopidae).
    Cuthbert RN; Callaghan A; Dick JTA
    J Med Entomol; 2019 Jan; 56(1):276-279. PubMed ID: 30215748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a community ecology of landscapes: predicting multiple predator-prey interactions across geographic space.
    Schmitz OJ; Miller JRB; Trainor AM; Abrahms B
    Ecology; 2017 Sep; 98(9):2281-2292. PubMed ID: 28585719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predator diversity and trophic interactions.
    Schmitz OJ
    Ecology; 2007 Oct; 88(10):2415-26. PubMed ID: 18027743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prey consumption and prey preference of the larvae of the mosquito Culex (Lutzia) raptor on the larvae of Culex quinquefasciatus.
    Thangam TS; Kathiresan K
    Experientia; 1996 Apr; 52(4):380-2. PubMed ID: 8620943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down effects of intraspeciflic predator behavioral variation.
    Lichtenstein JLL; McEwen BL; Primavera SD; Lenihan T; Wood ZM; Carson WP; Costa-Pereira R
    Oecologia; 2024 May; 205(1):203-214. PubMed ID: 38789814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Habitat complexity and sex-dependent predation of mosquito larvae in containers.
    Alto BW; Griswold MW; Lounibos LP
    Oecologia; 2005 Dec; 146(2):300-10. PubMed ID: 16041612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis.
    Langellotto GA; Denno RF
    Oecologia; 2004 Mar; 139(1):1-10. PubMed ID: 14872336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reefscapes of fear: predation risk and reef hetero-geneity interact to shape herbivore foraging behaviour.
    Catano LB; Rojas MC; Malossi RJ; Peters JR; Heithaus MR; Fourqurean JW; Burkepile DE
    J Anim Ecol; 2016 Jan; 85(1):146-56. PubMed ID: 26332988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.