These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31943797)

  • 1. Gelless Secondary Growth of Zeolitic Aluminophosphate Membranes on Porous Supports with High Performance in CO
    Le QT; Nguyen DH; Nguyen NM; Nguyen DP; Nguyen TM; Nguyen TN; Pham TC
    ChemSusChem; 2020 Apr; 13(7):1720-1724. PubMed ID: 31943797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.
    Cowan MG; Gin DL; Noble RD
    Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chabazite-Type Zeolite Membranes for Effective CO
    Lee M; Hong S; Kim D; Kim E; Lim K; Jung JC; Richter H; Moon JH; Choi N; Nam J; Choi J
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3946-3960. PubMed ID: 30614677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite amine mixed matrix membranes for high-pressure CO
    Fauzan NAB; Mukhtar H; Nasir R; Mohshim DFB; Arasu N; Man Z; Mannan HA
    R Soc Open Sci; 2020 Sep; 7(9):200795. PubMed ID: 33047043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Biomass Glucose-Derived Porous Carbon Spheres with High Nitrogen Doping: As a Promising Adsorbent for CO
    Li Y; Wang S; Wang B; Wang Y; Wei J
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31963914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive review on zeolite-based mixed matrix membranes for CO
    Hassan NS; Jalil AA; Bahari MB; Khusnun NF; Aldeen EMS; Mim RS; Firmansyah ML; Rajendran S; Mukti RR; Andika R; Devianto H
    Chemosphere; 2023 Feb; 314():137709. PubMed ID: 36592833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High CO
    Noro SI; Matsuda R; Hijikata Y; Inubushi Y; Takeda S; Kitagawa S; Takahashi Y; Yoshitake M; Kubo K; Nakamura T
    Chempluschem; 2015 Oct; 80(10):1517-1524. PubMed ID: 31973388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hybrid Zeolite Membrane-Based Breakthrough for Simultaneous CO
    Jeong Y; Kim S; Lee M; Hong S; Jang MG; Choi N; Hwang KS; Baik H; Kim JK; Yip ACK; Choi J
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2893-2907. PubMed ID: 34985249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations of CO
    Yin Z; Chen H; Yang L; Peng C; Qin Y; Wang T; Sun W; Wang C
    Langmuir; 2021 Jan; 37(3):1255-1266. PubMed ID: 33443439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide.
    Qiu W; Zhang K; Li FS; Zhang K; Koros WJ
    ChemSusChem; 2014 Apr; 7(4):1186-94. PubMed ID: 24677799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethersulfone based MMMs with 2D materials and ionic liquid for CO
    Kamble AR; Patel CM; Murthy ZVP
    J Environ Manage; 2020 May; 262():110256. PubMed ID: 32090882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO
    Hou Q; Wu Y; Zhou S; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2019 Jan; 58(1):327-331. PubMed ID: 30395374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures.
    Furmaniak S; Kowalczyk P; Terzyk AP; Gauden PA; Harris PJ
    J Colloid Interface Sci; 2013 May; 397():144-53. PubMed ID: 23433521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts.
    Gómez-Álvarez P; Hamad S; Haranczyk M; Ruiz-Salvador AR; Calero S
    Dalton Trans; 2016 Jan; 45(1):216-25. PubMed ID: 26600432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-layered fluorinated graphene nanopores for H
    Wang T; Liu L; Perez-Aguilar JM; Gu Z
    J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Separation Performance of Glassy PPO with the Addition of a Molecular Sieve (ZIF-8): Gas Transport at Various Temperatures.
    Benedetti FM; De Angelis MG; Esposti MD; Fabbri P; Masili A; Orsini A; Pettinau A
    Membranes (Basel); 2020 Mar; 10(4):. PubMed ID: 32230906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Ionic Liquid Nanoconfinement on the CO
    Rahmani F; Scovazzo P; Pasquinelli MA; Nouranian S
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44460-44469. PubMed ID: 34495628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.