These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31943884)
1. Direct Synthesis of Microporous Bicarbazole-Based Covalent Triazine Frameworks for High-Performance Energy Storage and Carbon Dioxide Uptake. Mohamed MG; El-Mahdy AFM; Ahmed MMM; Kuo SW Chempluschem; 2019 Nov; 84(11):1767-1774. PubMed ID: 31943884 [TBL] [Abstract][Full Text] [Related]
2. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks. Du J; Liu Y; Krishna R; Yu Y; Cui Y; Wang S; Liu Y; Song X; Liang Z ACS Appl Mater Interfaces; 2018 Aug; 10(31):26678-26686. PubMed ID: 30020769 [TBL] [Abstract][Full Text] [Related]
4. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. Li Y; Zheng S; Liu X; Li P; Sun L; Yang R; Wang S; Wu ZS; Bao X; Deng WQ Angew Chem Int Ed Engl; 2018 Jul; 57(27):7992-7996. PubMed ID: 29135063 [TBL] [Abstract][Full Text] [Related]
5. Bipolar Supercapacitive Performance of N-Containing Carbon Materials Derived from Covalent Triazine-Based Framework. Maity A; Siebels M; Jana A; Eswaran M; Dhanusuraman R; Janiak C; Bhunia A ChemSusChem; 2024 Sep; ():e202401716. PubMed ID: 39228217 [TBL] [Abstract][Full Text] [Related]
6. Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors. Vadiyar MM; Liu X; Ye Z ACS Appl Mater Interfaces; 2019 Dec; 11(49):45805-45817. PubMed ID: 31724841 [TBL] [Abstract][Full Text] [Related]
7. Covalent Triazine Frameworks Based on the First Wessely ID; Schade AM; Dey S; Bhunia A; Nuhnen A; Janiak C; Bräse S Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34200941 [TBL] [Abstract][Full Text] [Related]
8. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596 [TBL] [Abstract][Full Text] [Related]
9. Straightforward preparation of fluorinated covalent triazine frameworks with significantly enhanced carbon dioxide and hydrogen adsorption capacities. Wang G; Onyshchenko Y; De Geyter N; Morent R; Leus K; Van Der Voort P Dalton Trans; 2019 Dec; 48(47):17612-17619. PubMed ID: 31755487 [TBL] [Abstract][Full Text] [Related]
10. Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO Mohamed MG; Ahmed MMM; Du WT; Kuo SW Molecules; 2021 Jan; 26(3):. PubMed ID: 33572605 [TBL] [Abstract][Full Text] [Related]
11. Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO Wang G; Leus K; Zhao S; Van Der Voort P ACS Appl Mater Interfaces; 2018 Jan; 10(1):1244-1249. PubMed ID: 29235840 [TBL] [Abstract][Full Text] [Related]
12. Novel Covalent Triazine Framework for High-Performance CO Dang QQ; Liu CY; Wang XM; Zhang XM ACS Appl Mater Interfaces; 2018 Aug; 10(33):27972-27978. PubMed ID: 30040377 [TBL] [Abstract][Full Text] [Related]
13. Functionalized Covalent Triazine Frameworks for Effective CO Fu Y; Wang Z; Li S; He X; Pan C; Yan J; Yu G ACS Appl Mater Interfaces; 2018 Oct; 10(42):36002-36009. PubMed ID: 30272437 [TBL] [Abstract][Full Text] [Related]
14. Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture. Wang K; Huang H; Liu D; Wang C; Li J; Zhong C Environ Sci Technol; 2016 May; 50(9):4869-76. PubMed ID: 27081869 [TBL] [Abstract][Full Text] [Related]
15. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. Zhang Y; Zhang B; Chen L; Wang T; Di M; Jiang F; Xu X; Qiao S J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1534-1542. PubMed ID: 34500156 [TBL] [Abstract][Full Text] [Related]
16. Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine-Based Frameworks. Wang X; Zhang C; Zhao Y; Ren S; Jiang JX Macromol Rapid Commun; 2016 Feb; 37(4):323-9. PubMed ID: 26697782 [TBL] [Abstract][Full Text] [Related]
17. Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage. Lee YJ; Talapaneni SN; Coskun A ACS Appl Mater Interfaces; 2017 Sep; 9(36):30679-30685. PubMed ID: 28782930 [TBL] [Abstract][Full Text] [Related]
18. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO Xu G; Zhu Y; Xie W; Zhang S; Yao C; Xu Y Chem Asian J; 2019 Oct; 14(19):3259-3263. PubMed ID: 31441220 [TBL] [Abstract][Full Text] [Related]
19. Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. El-Mahdy AFM; Young C; Kim J; You J; Yamauchi Y; Kuo SW ACS Appl Mater Interfaces; 2019 Mar; 11(9):9343-9354. PubMed ID: 30735343 [TBL] [Abstract][Full Text] [Related]
20. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO Suo X; Zhang F; Yang Z; Chen H; Wang T; Wang Z; Kobayashi T; Do-Thanh CL; Maltsev D; Liu Z; Dai S Angew Chem Int Ed Engl; 2021 Dec; 60(49):25688-25694. PubMed ID: 34582075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]