BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 3194390)

  • 21. Effect of ionic strength on the hybridization of oligodeoxynucleotides with reduced charge due to methylphosphonate linkages to unmodified oligodeoxynucleotides containing the complementary sequence.
    Quartin RS; Wetmur JG
    Biochemistry; 1989 Feb; 28(3):1040-7. PubMed ID: 2713356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytosine detection by a fluorescein-labeled probe containing base-discriminating fluorescent nucleobase.
    Okamoto A; Tanaka K; Fukuta T; Saito I
    Chembiochem; 2004 Jul; 5(7):958-63. PubMed ID: 15239053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.
    Li H; Luo Y; Sun X
    Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic characterization of fluorescein- and tetramethylrhodamine-labeled oligonucleotides and their complexes with a DNA template.
    Wang L; Gaigalas AK; Blasic J; Holden MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2741-50. PubMed ID: 15350908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational flexibility of three-way DNA junctions containing unpaired nucleotides.
    Yang M; Millar DP
    Biochemistry; 1996 Jun; 35(24):7959-67. PubMed ID: 8672499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonance energy transfer between the active sites of rabbit muscle creatine kinase: analysis by steady-state and time-resolved fluorescence.
    Grossman SH
    Biochemistry; 1989 May; 28(11):4894-902. PubMed ID: 2765518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence resonance energy transfer as a probe for G-quartet formation by a telomeric repeat.
    Mergny JL; Maurizot JC
    Chembiochem; 2001 Feb; 2(2):124-32. PubMed ID: 11828436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.
    Shahmuradyan A; Krull UJ
    Anal Chem; 2016 Mar; 88(6):3186-93. PubMed ID: 26866462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The three-dimensional context of a double helix determines the fluorescence of the internucleoside-tethered pair of fluorophores.
    Metelev V; Zhang S; Tabatadze D; Kumar AT; Bogdanov A
    Mol Biosyst; 2013 Oct; 9(10):2447-53. PubMed ID: 23925269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular beacon-style hybridization assay for quantitative analysis of surface invasive cleavage reactions.
    Lockett MR; Shortreed MR; Smith LM
    Anal Chem; 2007 Aug; 79(15):6031-6. PubMed ID: 17595056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA.
    Parkhurst KM; Parkhurst LJ
    Biochemistry; 1995 Jan; 34(1):285-92. PubMed ID: 7819209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence energy transfer as a probe for tetraplex formation: the i-motif.
    Mergny JL
    Biochemistry; 1999 Feb; 38(5):1573-81. PubMed ID: 9931024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer.
    Gohlke C; Murchie AI; Lilley DM; Clegg RM
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11660-4. PubMed ID: 7526401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes.
    Marras SA; Kramer FR; Tyagi S
    Nucleic Acids Res; 2002 Nov; 30(21):e122. PubMed ID: 12409481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distance-dependent emission from dye-labeled oligonucleotides on striped Au/Ag nanowires: effect of secondary structure and hybridization efficiency.
    Stoermer RL; Keating CD
    J Am Chem Soc; 2006 Oct; 128(40):13243-54. PubMed ID: 17017805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution.
    Morrison LE; Stols LM
    Biochemistry; 1993 Mar; 32(12):3095-104. PubMed ID: 8457571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence energy transfer between two triple helix-forming oligonucleotides bound to duplex DNA.
    Mergny JL; Garestier T; Rougée M; Lebedev AV; Chassignol M; Thuong NT; Hélène C
    Biochemistry; 1994 Dec; 33(51):15321-8. PubMed ID: 7803395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cassette labeling for facile construction of energy transfer fluorescent primers.
    Ju J; Glazer AN; Mathies RA
    Nucleic Acids Res; 1996 Mar; 24(6):1144-8. PubMed ID: 8604350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyanine dyes with high absorption cross section as donor chromophores in energy transfer primers.
    Hung SC; Ju J; Mathies RA; Glazer AN
    Anal Biochem; 1996 Dec; 243(1):15-27. PubMed ID: 8954521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of fluorescence energy transfer in duplex and branched DNA molecules.
    Cooper JP; Hagerman PJ
    Biochemistry; 1990 Oct; 29(39):9261-8. PubMed ID: 2271593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.