BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31943922)

  • 1. 1,2,4-Oxadiazole-Bridged Polynitropyrazole Energetic Materials with Enhanced Thermal Stability and Low Sensitivity.
    Yan T; Cheng G; Yang H
    Chempluschem; 2019 Oct; 84(10):1567-1577. PubMed ID: 31943922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel polynitro azoxypyrazole-based energetic materials with high performance.
    Yang P; Yang H; Zhao Y; Tang J; Cheng G
    Dalton Trans; 2021 Nov; 50(45):16499-16503. PubMed ID: 34739014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1-(3,5-Dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT) and its energetic salts: highly thermally stable energetic materials with high-performance.
    Li C; Zhang M; Chen Q; Li Y; Gao H; Fu W; Zhou Z
    Dalton Trans; 2016 Nov; 45(44):17956-17965. PubMed ID: 27781234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, Characterization, and Properties of Heat-Resistant Energetic Materials Based on C-C Bridged Dinitropyrazole Energetic Materials.
    Zhang R; Xu Y; Yang F; Jiang S; Wang P; Lin Q; Huang H; Lu M
    J Org Chem; 2024 May; 89(9):5966-5976. PubMed ID: 38651598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining the advantages of 1,3,4-oxadiazole and tetrazole enables achieving high-energy insensitive materials.
    Zhang C; Xu MQ; Dong WS; Lu ZJ; Zhang H; Wu XW; Li ZM; Zhang JG
    Dalton Trans; 2023 Sep; 52(35):12404-12409. PubMed ID: 37594183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Synthesis of Nitrogen-Rich Azo-Bridged Furoxanylazoles as High-Performance Energetic Materials.
    Larin AA; Shaferov AV; Kulikov AS; Pivkina AN; Monogarov KA; Dmitrienko AO; Ananyev IV; Khakimov DV; Fershtat LL; Makhova NN
    Chemistry; 2021 Oct; 27(59):14628-14637. PubMed ID: 34324750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials.
    Wei H; He C; Zhang J; Shreeve JM
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9367-71. PubMed ID: 26088918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level.
    Ma J; Chinnam AK; Cheng G; Yang H; Zhang J; Shreeve JM
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5497-5504. PubMed ID: 33277822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting the energetic potential of 1,2,4-oxadiazole derivatives: combining the benefits of a 1,2,4-oxadiazole framework with various energetic functionalities.
    Yan C; Wang K; Liu T; Yang H; Cheng G; Zhang Q
    Dalton Trans; 2017 Oct; 46(41):14210-14218. PubMed ID: 28990608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating Energetic Moieties into Four Oxadiazole Ring Systems for the Generation of High-Performance Energetic Materials.
    Wang B; Xiong H; Cheng G; Yang H
    Chempluschem; 2018 May; 83(5):439-447. PubMed ID: 31957352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel metal-organic frameworks assembled from the combination of polynitro-pyrazole and 5-nitroamine-1,2,4-oxadiazole: synthesis, structure and thermal properties.
    Yang F; Xu Y; Wang P; Lin Q; Lu M
    Dalton Trans; 2021 Sep; 50(37):12906-12912. PubMed ID: 34581376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Nitrotetrazol and 1,2,4-Oxadiazole Methylene-Bridged Energetic Compounds: Synthesis, Crystal Structures and Performances.
    Zhang J; Bi F; Yang Z; Xue Q; Wang B
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Characterization of 4-(1,2,4-Triazole-5-yl)furazan Derivatives as High-Performance Insensitive Energetic Materials.
    Xu Z; Cheng G; Yang H; Zhang J; Shreeve JM
    Chemistry; 2018 Jul; 24(41):10488-10497. PubMed ID: 29762890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The design and synthesis of new advanced energetic materials based on pyrazole-triazole backbones.
    Tang J; Xiong H; Tang Y; Yang H; Cheng G
    Dalton Trans; 2023 Mar; 52(10):3169-3175. PubMed ID: 36790149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinations of furoxan and 1,2,4-oxadiazole for the generation of high performance energetic materials.
    Xiong H; Yang H; Lei C; Yang P; Hu W; Cheng G
    Dalton Trans; 2019 Oct; 48(39):14705-14711. PubMed ID: 31538636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Duo and a Trio of Triazoles as Very Thermostable and Insensitive Energetic Materials.
    Tang Y; Yin Z; Chinnam AK; Staples RJ; Shreeve JM
    Inorg Chem; 2020 Dec; 59(23):17766-17774. PubMed ID: 33198458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Investigation of 2,3,5,6-Tetra-(1H-tetrazol-5-yl)pyrazine Based Energetic Materials.
    Witkowski TG; Richardson P; Gabidullin B; Hu A; Murugesu M
    Chempluschem; 2018 Nov; 83(11):984-990. PubMed ID: 31950729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Dense N-N-Bridged Dinitramino Bistriazole-Based 3D Metal-Organic Frameworks with Balanced Outstanding Energetic Performance.
    Rajak R; Kumar N; Ghule VD; Dharavath S
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38598691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and Biocides Storage Compounds: Synthesis and Characterization of Energetic Bridged Bis(triiodoazoles).
    He C; Zhao G; Hooper JP; Shreeve JM
    Inorg Chem; 2017 Nov; 56(21):13547-13552. PubMed ID: 29035045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promising Thermally Stable Energetic Materials with the Combination of Pyrazole-1,3,4-Oxadiazole and Pyrazole-1,2,4-Triazole Backbones: Facile Synthesis and Energetic Performance.
    Yadav AK; Ghule VD; Dharavath S
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36287099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.