These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31943936)

  • 1. Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives.
    Li X; Wang C; Song W; Meng C; Zuo C; Xue Y; Lai WY; Huang W
    Chempluschem; 2019 Oct; 84(10):1623-1629. PubMed ID: 31943936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives.
    Chen W; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution.
    Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyfunctional Lewis acids: intriguing solid-state structure and selective detection and discrimination of nitroaromatic explosives.
    Swamy P CA; Thilagar P
    Chemistry; 2015 Jun; 21(24):8874-82. PubMed ID: 25950287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres.
    Turhan H; Tukenmez E; Karagoz B; Bicak N
    Talanta; 2018 Mar; 179():107-114. PubMed ID: 29310209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency.
    Gole B; Bar AK; Mukherjee PS
    Chemistry; 2014 Feb; 20(8):2276-91. PubMed ID: 24459002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. π-Electron rich small molecule sensors for the recognition of nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chem Commun (Camb); 2015 Nov; 51(89):16014-32. PubMed ID: 26463400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence quenching as an indirect detection method for nitrated explosives.
    Goodpaster JV; McGuffin VL
    Anal Chem; 2001 May; 73(9):2004-11. PubMed ID: 11354482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triphenylene derivatives: chemosensors for sensitive detection of nitroaromatic explosives.
    Bhalla V; Arora H; Singh H; Kumar M
    Dalton Trans; 2013 Jan; 42(4):969-74. PubMed ID: 23108226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching.
    Meaney MS; McGuffin VL
    Anal Chim Acta; 2008 Mar; 610(1):57-67. PubMed ID: 18267140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.
    Zarei AR; Ghazanchayi B
    Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives.
    Sarkar K; Salinas Y; Campos I; Martínez-Máñez R; Marcos MD; Sancenón F; Amorós P
    Chempluschem; 2013 Jul; 78(7):684-694. PubMed ID: 31986617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds.
    Bal M; Köse A; Özpaça Ö; Köse M
    J Fluoresc; 2023 Jul; 33(4):1443-1455. PubMed ID: 36752930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzo[ghi]perylene and coronene as ratiometric fluorescence probes for the selective sensing of nitroaromatic explosives.
    Hussain E; Li Y; Cheng C; Zhuo H; Shahzad SA; Ali S; Ismail M; Qi H; Yu C
    Talanta; 2020 Jan; 207():120316. PubMed ID: 31594608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups.
    Mi HY; Liu JL; Guan MM; Liu QW; Zhang ZQ; Feng GD
    Talanta; 2018 Sep; 187():314-320. PubMed ID: 29853053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of nitroaromatic explosives by new D-π-A sensing fluorophores on the basis of the pyrimidine scaffold.
    Verbitskiy EV; Baranova AA; Lugovik KI; Shafikov MZ; Khokhlov KO; Cheprakova EM; Rusinov GL; Chupakhin ON; Charushin VN
    Anal Bioanal Chem; 2016 Jun; 408(15):4093-101. PubMed ID: 27020930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H-Bonding Interactions Induced Two Isostructural Cd(II) Metal-Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives.
    Wang ZJ; Qin L; Chen JX; Zheng HG
    Inorg Chem; 2016 Nov; 55(21):10999-11005. PubMed ID: 27767307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vinylanthracene-Based Compounds as Electron-Rich Sensors for Explosives Recognition.
    Chowdhury A; Mukherjee PS
    Chempluschem; 2016 Dec; 81(12):1360-1370. PubMed ID: 31964060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled discrete molecules for sensing nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chemistry; 2015 Apr; 21(18):6656-66. PubMed ID: 25694365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection.
    Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X
    Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.