BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31943952)

  • 21. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic C-H bond amination from high-spin iron imido complexes.
    King ER; Hennessy ET; Betley TA
    J Am Chem Soc; 2011 Apr; 133(13):4917-23. PubMed ID: 21405138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bis(silylenyl)-substituted ferrocene-stabilized η
    Luecke MP; Porwal D; Kostenko A; Zhou YP; Yao S; Keck M; Limberg C; Oestreich M; Driess M
    Dalton Trans; 2017 Dec; 46(47):16412-16418. PubMed ID: 28967014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Pentacoordinate Mn(II) Precatalyst That Exhibits Notable Aldehyde and Ketone Hydrosilylation Turnover Frequencies.
    Ghosh C; Mukhopadhyay TK; Flores M; Groy TL; Trovitch RJ
    Inorg Chem; 2015 Nov; 54(21):10398-406. PubMed ID: 26480233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new anthraquinoid ligand for the iron-catalyzed hydrosilylation of carbonyl compounds at room temperature: new insights and kinetics.
    Raya-Barón Á; Galdeano-Ruano CP; Oña-Burgos P; Rodríguez-Diéguez A; Langer R; López-Ruiz R; Romero-González R; Kuzu I; Fernández I
    Dalton Trans; 2018 May; 47(21):7272-7281. PubMed ID: 29766169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation.
    Sun W; Li MP; Li LJ; Huang Q; Hu MY; Zhu SF
    Chem Sci; 2022 Mar; 13(9):2721-2728. PubMed ID: 35340863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation.
    Hu MY; He Q; Fan SJ; Wang ZC; Liu LY; Mu YJ; Peng Q; Zhu SF
    Nat Commun; 2018 Jan; 9(1):221. PubMed ID: 29335560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unveiling the Reactivity of Part Per Million Levels of Cobalt-Salen Complexes in Hydrosilylation of Ketones.
    Latha AT; P CAS
    Chemistry; 2024 Jun; ():e202401841. PubMed ID: 38853149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dioxomolybdenum(VI) complexes as catalysts for the hydrosilylation of aldehydes and ketones.
    Reis PM; Romão CC; Royo B
    Dalton Trans; 2006 Apr; (15):1842-6. PubMed ID: 16585971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study.
    Chen HY; Di Tommaso D; Hogarth G; Catlow CR
    Dalton Trans; 2011 Jan; 40(2):402-12. PubMed ID: 21103602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhodium-Catalyzed Dehydrogenative Silylation of Acetophenone Derivatives: Formation of Silyl Enol Ethers versus Silyl Ethers.
    Garcés K; Lalrempuia R; Polo V; Fernández-Alvarez FJ; García-Orduña P; Lahoz FJ; Pérez-Torrente JJ; Oro LA
    Chemistry; 2016 Oct; 22(41):14717-29. PubMed ID: 27553810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic Investigation of Bis(imino)pyridine Manganese Catalyzed Carbonyl and Carboxylate Hydrosilylation.
    Mukhopadhyay TK; Rock CL; Hong M; Ashley DC; Groy TL; Baik MH; Trovitch RJ
    J Am Chem Soc; 2017 Apr; 139(13):4901-4915. PubMed ID: 28282136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple reaction pathways in rhodium-catalyzed hydrosilylations of ketones.
    Schneider N; Finger M; Haferkemper C; Bellemin-Laponnaz S; Hofmann P; Gade LH
    Chemistry; 2009 Nov; 15(43):11515-29. PubMed ID: 19813237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trans influence on the rate of reductive elimination. Reductive elimination of amines from isomeric arylpalladium amides with unsymmetrical coordination spheres.
    Yamashita M; Cuevas Vicario JV; Hartwig JF
    J Am Chem Soc; 2003 Dec; 125(52):16347-60. PubMed ID: 14692777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Coordinate Iron(0) Complexes with
    Cheng J; Chen Q; Leng X; Ye S; Deng L
    Inorg Chem; 2019 Oct; 58(19):13129-13141. PubMed ID: 31536336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substituent effects in the hydrosilylation of coordinated dinitrogen in a ditantalum complex: cleavage and functionalization of N2.
    MacKay BA; Munha RF; Fryzuk MD
    J Am Chem Soc; 2006 Jul; 128(29):9472-83. PubMed ID: 16848485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic Kinetic Resolution of Heterobiaryl Ketones by Zinc-Catalyzed Asymmetric Hydrosilylation.
    Hornillos V; Carmona JA; Ros A; Iglesias-Sigüenza J; López-Serrano J; Fernández R; Lassaletta JM
    Angew Chem Int Ed Engl; 2018 Mar; 57(14):3777-3781. PubMed ID: 29437283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regioselective Hydrosilylation of Olefins Catalyzed by a Molecular Calcium Hydride Cation.
    Schuhknecht D; Spaniol TP; Maron L; Okuda J
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):310-314. PubMed ID: 31609062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic aspects of hydrosilylation catalyzed by (ArN=)Mo(H)(Cl)(PMe3)3.
    Khalimon AY; Shirobokov OG; Peterson E; Simionescu R; Kuzmina LG; Howard JA; Nikonov GI
    Inorg Chem; 2012 Apr; 51(7):4300-13. PubMed ID: 22435952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bis(imino)pyridine iron complexes for aldehyde and ketone hydrosilylation.
    Tondreau AM; Lobkovsky E; Chirik PJ
    Org Lett; 2008 Jul; 10(13):2789-92. PubMed ID: 18537247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.