BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31944102)

  • 1. Tailored Palladium-Platinum Nanoconcave Cubes as High Performance Catalysts for the Direct Synthesis of Hydrogen Peroxide.
    Han GH; Xiao X; Hong J; Lee KJ; Park S; Ahn JP; Lee KY; Yu T
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6328-6335. PubMed ID: 31944102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.
    Long NV; Thi CM; Yong Y; Nogami M; Ohtaki M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4799-824. PubMed ID: 23901503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition of Pd, Pt, and PdPt Nanoparticles on TiO
    Crone M; Trinkies LL; Dittmeyer R; Türk M
    Molecules; 2024 May; 29(9):. PubMed ID: 38731633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pd@Pt Core-Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction.
    Datta KJ; Datta KK; Gawande MB; Ranc V; Čépe K; Malgras V; Yamauchi Y; Varma RS; Zboril R
    Chemistry; 2016 Jan; 22(5):1577-81. PubMed ID: 26455725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of Pd@Pt core-shell nanocubes with low Pt content via direct seed-mediated growth and their enhanced activity for formic acid oxidation.
    Xiao X; Jeong H; Song J; Ahn JP; Kim J; Yu T
    Chem Commun (Camb); 2019 Oct; 55(79):11952-11955. PubMed ID: 31531450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core-Shell Nanoparticles and Their Catalysis of NO
    Pekkari A; Say Z; Susarrey-Arce A; Langhammer C; Härelind H; Sebastian V; Moth-Poulsen K
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36196-36204. PubMed ID: 31418548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis.
    Potemkin DI; Maslov DK; Loponov K; Snytnikov PV; Shubin YV; Plyusnin PE; Svintsitskiy DA; Sobyanin VA; Lapkin AA
    Front Chem; 2018; 6():85. PubMed ID: 29637068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability.
    Wang X; Vara M; Luo M; Huang H; Ruditskiy A; Park J; Bao S; Liu J; Howe J; Chi M; Xie Z; Xia Y
    J Am Chem Soc; 2015 Dec; 137(47):15036-42. PubMed ID: 26566188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial synthesis of Pd-Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction.
    Xu H; Xiao Y; Xu M; Cui H; Tan L; Feng N; Liu X; Qiu G; Dong H; Xie J
    Nanotechnology; 2019 Feb; 30(6):065607. PubMed ID: 30524068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.
    Wang CH; Hsu HC; Wang KC
    J Colloid Interface Sci; 2014 Aug; 427():91-7. PubMed ID: 24388448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts.
    Edwards JK; Pritchard J; Lu L; Piccinini M; Shaw G; Carley AF; Morgan DJ; Kiely CJ; Hutchings GJ
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2381-4. PubMed ID: 24474182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts.
    Edwards JK; Carley AF; Herzing AA; Kiely CJ; Hutchings GJ
    Faraday Discuss; 2008; 138():225-39; discussion 317-35, 433-4. PubMed ID: 18447018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis.
    Zheng H; Matseke MS; Munonde TS
    Ultrason Sonochem; 2019 Oct; 57():166-171. PubMed ID: 31208611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen.
    Zhang H; Jin M; Liu H; Wang J; Kim MJ; Yang D; Xie Z; Liu J; Xia Y
    ACS Nano; 2011 Oct; 5(10):8212-22. PubMed ID: 21888409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
    Chen D; Ye F; Liu H; Yang J
    Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pd-Sn Alloy Catalysts for Direct Synthesis of Hydrogen Peroxide from H
    Yang Z; Hao Z; Zhou S; Xie P; Wei Z; Zhao S; Gong F
    ACS Appl Mater Interfaces; 2023 May; 15(19):23058-23067. PubMed ID: 37133527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.
    Salem MA; Bakr EA; El-Attar HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():155-163. PubMed ID: 28709141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction.
    Zhang H; Jin M; Wang J; Li W; Camargo PH; Kim MJ; Yang D; Xie Z; Xia Y
    J Am Chem Soc; 2011 Apr; 133(15):6078-89. PubMed ID: 21438596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.