These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31944102)

  • 21. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity.
    Yang CW; Chanda K; Lin PH; Wang YN; Liao CW; Huang MH
    J Am Chem Soc; 2011 Dec; 133(49):19993-20000. PubMed ID: 22091631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies.
    Kim Y; Lee YW; Kim M; Han SW
    Chemistry; 2014 Jun; 20(26):7901-5. PubMed ID: 24867229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomistic Insights into H
    Banisalman MJ; Lee HW; Koh H; Han SS
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17577-17585. PubMed ID: 33835774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold-Palladium Nanoalloys Supported by Graphene Oxide and Lamellar TiO
    Guo S; Zhang S; Fang Q; Abroshan H; Kim HJ; Haruta M; Li G
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40599-40607. PubMed ID: 30381951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA-Encoded Morphological Evolution of Bimetallic Pd@Au Core-shell Nanoparticles from a High-indexed Core.
    Reddy Satyavolu NS; Pishevaresfahani N; Tan LH; Lu Y
    Nano Res; 2018 Sep; 11(9):4549-4561. PubMed ID: 30906510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction.
    Tan L; Li L; Peng Y; Guo L
    Nanotechnology; 2015 Dec; 26(50):505401. PubMed ID: 26585310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.
    Kobayashi H; Kusada K; Kitagawa H
    Acc Chem Res; 2015 Jun; 48(6):1551-9. PubMed ID: 25993560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Cu(core) Pt(shell) nanoparticles as model structures for core-shell electrocatalysts by direct platinum electrodeposition on copper.
    Kulp C; Gillmeister K; Widdra W; Bron M
    Chemphyschem; 2013 Apr; 14(6):1205-10. PubMed ID: 23463710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concave Pd-Pt Core-Shell Nanocrystals with Ultrathin Pt Shell Feature and Enhanced Catalytic Performance.
    Zhang Y; Bu L; Jiang K; Guo S; Huang X
    Small; 2016 Feb; 12(6):706-12. PubMed ID: 26708012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core-shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite.
    Li M; Wang P; Li F; Chu Q; Li Y; Dong Y
    Biosens Bioelectron; 2017 Jan; 87():752-759. PubMed ID: 27649331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth.
    Xia X; Figueroa-Cosme L; Tao J; Peng HC; Niu G; Zhu Y; Xia Y
    J Am Chem Soc; 2014 Aug; 136(31):10878-81. PubMed ID: 25058427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bimetallic Pt-Pd nanostructures supported on MoS
    Sha R; Vishnu N; Badhulika S
    Mikrochim Acta; 2018 Aug; 185(8):399. PubMed ID: 30073591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid.
    Zhao Q; Ge C; Cai Y; Qiao Q; Jia X
    J Colloid Interface Sci; 2018 Mar; 514():425-432. PubMed ID: 29278798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation.
    Xiong Y; Ma Y; Li J; Huang J; Yan Y; Zhang H; Wu J; Yang D
    Nanoscale; 2017 Aug; 9(31):11077-11084. PubMed ID: 28741632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors.
    Zhang Y; Zhang C; Zhang D; Ma M; Wang W; Chen Q
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1246-54. PubMed ID: 26478428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pd@Au core-shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties.
    Zhang L; Niu W; Zhao J; Zhu S; Yuan Y; Hua L; Xu G
    Faraday Discuss; 2013; 164():175-88. PubMed ID: 24466664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Centrifugal microfluidic device for the high-throughput synthesis of Pd@AuPt core-shell nanoparticles to evaluate the performance of hydrogen peroxide generation.
    Nguyen HV; Kim KY; Nam H; Lee SY; Yu T; Seo TS
    Lab Chip; 2020 Sep; 20(18):3293-3301. PubMed ID: 32766653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.