These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31944113)

  • 1. Stochastic Stress Jumps Due to Soliton Dynamics in Two-Dimensional van der Waals Interfaces.
    Kim S; Annevelink E; Han E; Yu J; Huang PY; Ertekin E; van der Zande AM
    Nano Lett; 2020 Feb; 20(2):1201-1207. PubMed ID: 31944113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-electromechanical Drumhead Resonators from Two-Dimensional Material Bimorphs.
    Kim S; Yu J; van der Zande AM
    Nano Lett; 2018 Nov; 18(11):6686-6695. PubMed ID: 30339756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipation from Interlayer Friction in Graphene Nanoelectromechanical Resonators.
    Ferrari PF; Kim S; van der Zande AM
    Nano Lett; 2021 Oct; 21(19):8058-8065. PubMed ID: 34559536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Interfacial Bubble Controls Adhesion Mechanics in Van der Waals Heterostructure.
    Sangani LDV; Mandal S; Ghosh S; Watanabe K; Taniguchi T; Deshmukh MM
    Nano Lett; 2022 May; 22(9):3612-3619. PubMed ID: 35389226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrawide Frequency Tuning of Atomic Layer van der Waals Heterostructure Electromechanical Resonators.
    Ye F; Islam A; Zhang T; Feng PX
    Nano Lett; 2021 Jul; 21(13):5508-5515. PubMed ID: 34143641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards future physics and applications via two-dimensional material NEMS resonators.
    Yildirim T; Zhang L; Neupane GP; Chen S; Zhang J; Yan H; Hasan MM; Yoshikawa G; Lu Y
    Nanoscale; 2020 Nov; 12(44):22366-22385. PubMed ID: 33150899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domino-like stacking order switching in twisted monolayer-multilayer graphene.
    Zhang S; Xu Q; Hou Y; Song A; Ma Y; Gao L; Zhu M; Ma T; Liu L; Feng XQ; Li Q
    Nat Mater; 2022 Jun; 21(6):621-626. PubMed ID: 35449221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. van der Waals Graphene Kirigami Heterostructure for Strain-Controlled Thermal Transparency.
    Gao Y; Xu B
    ACS Nano; 2018 Nov; 12(11):11254-11262. PubMed ID: 30427663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material-Dependent Evolution of Mechanical Folding Instabilities in Two-Dimensional Atomic Membranes.
    Yu J; Kim S; Ertekin E; van der Zande AM
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10801-10808. PubMed ID: 32036649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain solitons and topological defects in bilayer graphene.
    Alden JS; Tsen AW; Huang PY; Hovden R; Brown L; Park J; Muller DA; McEuen PL
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11256-60. PubMed ID: 23798395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern Development and Control of Strained Solitons in Graphene Bilayers.
    Feng S; Xu Z
    Nano Lett; 2021 Feb; 21(4):1772-1777. PubMed ID: 33529036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems.
    Qian Z; Liu F; Hui Y; Kar S; Rinaldi M
    Nano Lett; 2015 Jul; 15(7):4599-604. PubMed ID: 26029960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soliton-dependent plasmon reflection at bilayer graphene domain walls.
    Jiang L; Shi Z; Zeng B; Wang S; Kang JH; Joshi T; Jin C; Ju L; Kim J; Lyu T; Shen YR; Crommie M; Gao HJ; Wang F
    Nat Mater; 2016 Aug; 15(8):840-4. PubMed ID: 27240109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Solitons in an Epitaxially Strained van der Waals-like Material.
    Dong JT; Inbar HS; Dempsey CP; Engel AN; Palmstrøm CJ
    Nano Lett; 2024 Apr; 24(15):4493-4497. PubMed ID: 38498733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene.
    Yoo H; Engelke R; Carr S; Fang S; Zhang K; Cazeaux P; Sung SH; Hovden R; Tsen AW; Taniguchi T; Watanabe K; Yi GC; Kim M; Luskin M; Tadmor EB; Kaxiras E; Kim P
    Nat Mater; 2019 May; 18(5):448-453. PubMed ID: 30988451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond van der Waals Interaction: The Case of MoSe
    Dau MT; Gay M; Di Felice D; Vergnaud C; Marty A; Beigné C; Renaud G; Renault O; Mallet P; Le Quang T; Veuillen JY; Huder L; Renard VT; Chapelier C; Zamborlini G; Jugovac M; Feyer V; Dappe YJ; Pochet P; Jamet M
    ACS Nano; 2018 Mar; 12(3):2319-2331. PubMed ID: 29384649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits of Coherency and Strain Transfer in Flexible 2D van der Waals Heterostructures: Formation of Strain Solitons and Interlayer Debonding.
    Kumar H; Dong L; Shenoy VB
    Sci Rep; 2016 Feb; 6():21516. PubMed ID: 26867496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical oscillations in bilayer graphene.
    Benameur MM; Gargiulo F; Manzeli S; Autès G; Tosun M; Yazyev OV; Kis A
    Nat Commun; 2015 Oct; 6():8582. PubMed ID: 26481767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Interactions in van der Waals Heterostructures of MoS
    Li H; Wu JB; Ran F; Lin ML; Liu XL; Zhao Y; Lu X; Xiong Q; Zhang J; Huang W; Zhang H; Tan PH
    ACS Nano; 2017 Nov; 11(11):11714-11723. PubMed ID: 29068659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic layer MoS
    Ye F; Lee J; Feng PX
    Nanoscale; 2017 Nov; 9(46):18208-18215. PubMed ID: 29160324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.