These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31944667)

  • 1. Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity.
    Bera S; Xue B; Rehak P; Jacoby G; Ji W; Shimon LJW; Beck R; Král P; Cao Y; Gazit E
    ACS Nano; 2020 Feb; 14(2):1694-1706. PubMed ID: 31944667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropically-Driven Co-assembly of l-Histidine and l-Phenylalanine to Form Supramolecular Materials.
    Tiwari OS; Aizen R; Meli M; Colombo G; Shimon LJW; Tal N; Gazit E
    ACS Nano; 2023 Feb; 17(4):3506-3517. PubMed ID: 36745579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of aromatic amino acids: a molecular dynamics study.
    Uyaver S; Hernandez HW; Habiboglu MG
    Phys Chem Chem Phys; 2018 Dec; 20(48):30525-30536. PubMed ID: 30512023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic minimalistic tryptophan zippers as a chiroptical switch.
    Haridas V; Sadanandan S; Dhawan S; Mishra R; Jain I; Goel G; Hu Y; Patel S
    Org Biomol Chem; 2017 Feb; 15(7):1661-1669. PubMed ID: 28128389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halogenation Regulates Supramolecular Chirality at Hierarchical Levels of Self-Assembled N-Terminal Aromatic Amino Acids.
    Zong Z; Hao A; Xing P
    J Phys Chem Lett; 2021 Feb; 12(4):1307-1315. PubMed ID: 33502203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles.
    Wang T; Ménard-Moyon C; Bianco A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10532-10544. PubMed ID: 38367060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications.
    Wang Y; Rencus-Lazar S; Zhou H; Yin Y; Jiang X; Cai K; Gazit E; Ji W
    ACS Nano; 2024 Jan; 18(2):1257-1288. PubMed ID: 38157317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the impact of inbuilt cold atmospheric pressure plasma on molecular assemblies of tryptophan enantiomers:
    Basumatary D; Bailung H; Jorvekar SB; Borkar RM; Sankaranarayanan K
    RSC Adv; 2023 Sep; 13(38):26640-26649. PubMed ID: 37681043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of tripeptides into γ-turn nanostructures.
    Ozawa Y; Sato H; Kayano Y; Yamaki N; Izato YI; Miyake A; Naito A; Kawamura I
    Phys Chem Chem Phys; 2019 Jun; 21(21):10879-10883. PubMed ID: 30968092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral template-induced porphyrin-based self-assembled materials for electrochemical chiral sensing.
    Niu X; Yan S; Zhao R; Han S; Cao K; Li H; Wang K
    Mikrochim Acta; 2023 Jan; 190(2):61. PubMed ID: 36662318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of two-dimensional (2D) ordered microsphere aligned by supramolecular self-assembly of Formyl-azobenzene and dipeptide.
    Ma H; Li S; Wei Y; Jiang L; Li J
    J Colloid Interface Sci; 2018 Mar; 514():491-495. PubMed ID: 29289731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient synthesis of both diastereomers of β,γ-diamino acids from phenylalanine and tryptophan.
    Auberger N; Stanovych A; Thétiot-Laurent S; Guillot R; Kouklovsky C; Cote des Combes S; Pacaud C; Devillers I; Alezra V
    Amino Acids; 2016 Sep; 48(9):2237-42. PubMed ID: 27206723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules.
    Zaguri D; Zimmermann MR; Meisl G; Levin A; Rencus-Lazar S; Knowles TPJ; Gazit E
    ACS Nano; 2021 Nov; 15(11):18305-18311. PubMed ID: 34694771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mirror image DNA nanostructures for chiral supramolecular assemblies.
    Lin C; Ke Y; Li Z; Wang JH; Liu Y; Yan H
    Nano Lett; 2009 Jan; 9(1):433-6. PubMed ID: 19063615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cross-talk among remote binding sites: the molecular basis for unusual synergistic allostery.
    Jiao W; Hutton RD; Cross PJ; Jameson GB; Parker EJ
    J Mol Biol; 2012 Jan; 415(4):716-26. PubMed ID: 22154807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic polymerization of enantiomeric
    Shen Y; Su R; Hao D; Xu X; Reches M; Min J; Chang H; Yu T; Li Q; Zhang X; Wang Y; Wang Y; Qi W
    Nat Commun; 2023 May; 14(1):3054. PubMed ID: 37237008
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.