BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31944767)

  • 1. Pioglitazone Increases Blood-Brain Barrier Expression of Fatty Acid-Binding Protein 5 and Docosahexaenoic Acid Trafficking into the Brain.
    Low YL; Jin L; Morris ER; Pan Y; Nicolazzo JA
    Mol Pharm; 2020 Mar; 17(3):873-884. PubMed ID: 31944767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary docosahexaenoic acid supplementation enhances expression of fatty acid-binding protein 5 at the blood-brain barrier and brain docosahexaenoic acid levels.
    Pan Y; Morris ER; Scanlon MJ; Marriott PJ; Porter CJH; Nicolazzo JA
    J Neurochem; 2018 Jul; 146(2):186-197. PubMed ID: 29582413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.
    Pan Y; Scanlon MJ; Owada Y; Yamamoto Y; Porter CJ; Nicolazzo JA
    Mol Pharm; 2015 Dec; 12(12):4375-85. PubMed ID: 26455443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function.
    Pan Y; Short JL; Choy KH; Zeng AX; Marriott PJ; Owada Y; Scanlon MJ; Porter CJ; Nicolazzo JA
    J Neurosci; 2016 Nov; 36(46):11755-11767. PubMed ID: 27852782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty Acid-Binding Protein 5 Mediates the Uptake of Fatty Acids, but not Drugs, Into Human Brain Endothelial Cells.
    Lee GS; Pan Y; Scanlon MJ; Porter CJH; Nicolazzo JA
    J Pharm Sci; 2018 Apr; 107(4):1185-1193. PubMed ID: 29247738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced blood-brain barrier expression of fatty acid-binding protein 5 is associated with increased vulnerability of APP/PS1 mice to cognitive deficits from low omega-3 fatty acid diets.
    Pan Y; Choy KHC; Marriott PJ; Chai SY; Scanlon MJ; Porter CJH; Short JL; Nicolazzo JA
    J Neurochem; 2018 Jan; 144(1):81-92. PubMed ID: 29105065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling the expression of fatty acid-binding proteins and fatty acid transporters in mouse microglia and assessing their role in docosahexaenoic acid-d5 uptake.
    Low YL; Pan Y; Short JL; Nicolazzo JA
    Prostaglandins Leukot Essent Fatty Acids; 2021 Aug; 171():102303. PubMed ID: 34098488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice.
    Iwao T; Takata F; Matsumoto J; Aridome H; Yasunaga M; Yokoya M; Kataoka Y; Dohgu S
    PLoS One; 2023; 18(2):e0281946. PubMed ID: 36795730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.
    Pélerin H; Jouin M; Lallemand MS; Alessandri JM; Cunnane SC; Langelier B; Guesnet P
    Prostaglandins Leukot Essent Fatty Acids; 2014 Nov; 91(5):213-20. PubMed ID: 25123062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid beta
    Ochiai Y; Uchida Y; Tachikawa M; Couraud PO; Terasaki T
    J Neurochem; 2019 Aug; 150(4):385-401. PubMed ID: 31091338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Docosahexaenoic Acid on Alzheimer's Disease: Is There a Role of the Blood-Brain Barrier?
    Pan Y; Khalil H; Nicolazzo JA
    Curr Clin Pharmacol; 2015; 10(3):222-41. PubMed ID: 26338174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PPARγ agonists regulate bidirectional transport of amyloid-β across the blood-brain barrier and hippocampus plasticity in db/db mice.
    Wang H; Chen F; Zhong KL; Tang SS; Hu M; Long Y; Miao MX; Liao JM; Sun HB; Hong H
    Br J Pharmacol; 2016 Jan; 173(2):372-85. PubMed ID: 26507867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.
    Ochiai Y; Uchida Y; Ohtsuki S; Tachikawa M; Aizawa S; Terasaki T
    J Neurochem; 2017 May; 141(3):400-412. PubMed ID: 28035674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and ex vivo regulation of breast cancer resistant protein (Bcrp) by peroxisome proliferator-activated receptor alpha (Pparα) at the blood-brain barrier.
    Hoque MT; Shah A; More V; Miller DS; Bendayan R
    J Neurochem; 2015 Dec; 135(6):1113-22. PubMed ID: 26465636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxisome proliferator-activated receptor-γ in capillary endothelia promotes fatty acid uptake by heart during long-term fasting.
    Goto K; Iso T; Hanaoka H; Yamaguchi A; Suga T; Hattori A; Irie Y; Shinagawa Y; Matsui H; Syamsunarno MR; Matsui M; Haque A; Arai M; Kunimoto F; Yokoyama T; Endo K; Gonzalez FJ; Kurabayashi M
    J Am Heart Assoc; 2013 Jan; 2(1):e004861. PubMed ID: 23525438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain.
    Yu S; Levi L; Casadesus G; Kunos G; Noy N
    J Biol Chem; 2014 May; 289(18):12748-58. PubMed ID: 24644281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5.
    Volakakis N; Joodmardi E; Perlmann T
    Biochem Biophys Res Commun; 2009 Dec; 390(4):1186-91. PubMed ID: 19861119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury.
    Figueroa JD; Serrano-Illan M; Licero J; Cordero K; Miranda JD; De Leon M
    J Neurotrauma; 2016 Aug; 33(15):1436-49. PubMed ID: 26715431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer's disease: in vitro and in vivo studies.
    Silva-Abreu M; Calpena AC; Andrés-Benito P; Aso E; Romero IA; Roig-Carles D; Gromnicova R; Espina M; Ferrer I; García ML; Male D
    Int J Nanomedicine; 2018; 13():5577-5590. PubMed ID: 30271148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Region-specific blood-brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer's disease.
    Sekhar GN; Fleckney AL; Boyanova ST; Rupawala H; Lo R; Wang H; Farag DB; Rahman KM; Broadstock M; Reeves S; Thomas SA
    Fluids Barriers CNS; 2019 Dec; 16(1):38. PubMed ID: 31842924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.