These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31944948)

  • 1. Radon Inversion via Deep Learning.
    He J; Wang Y; Ma J
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2076-2087. PubMed ID: 31944948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse radon transform with deep learning: an application in cardiac motion correction.
    Chang H; Kobzarenko V; Mitra D
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 37988757
    [No Abstract]   [Full Text] [Related]  

  • 3. A two-dimensional feasibility study of deep learning-based feature detection and characterization directly from CT sinograms.
    De Man Q; Haneda E; Claus B; Fitzgerald P; De Man B; Qian G; Shan H; Min J; Sabuncu M; Wang G
    Med Phys; 2019 Dec; 46(12):e790-e800. PubMed ID: 31811791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural network Radon inversion for image reconstruction.
    Rodriguez AF; Blass WE; Missimer JH; Leenders KL
    Med Phys; 2001 Apr; 28(4):508-14. PubMed ID: 11339747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-domain deep learning-based reconstruction method for fully 3D sparse data helical CT.
    Zheng A; Gao H; Zhang L; Xing Y
    Phys Med Biol; 2020 Dec; 65(24):245030. PubMed ID: 32365345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downsampled Imaging Geometric Modeling for Accurate CT Reconstruction via Deep Learning.
    He J; Chen S; Zhang H; Tao X; Lin W; Zhang S; Zeng D; Ma J
    IEEE Trans Med Imaging; 2021 Nov; 40(11):2976-2985. PubMed ID: 33881992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT sinogram-consistency learning for metal-induced beam hardening correction.
    Park HS; Lee SM; Kim HP; Seo JK; Chung YE
    Med Phys; 2018 Dec; 45(12):5376-5384. PubMed ID: 30238586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient Fourier method for 3-D radon inversion in exact cone-beam CT reconstruction.
    Schaller S; Flohr T; Steffen P
    IEEE Trans Med Imaging; 1998 Apr; 17(2):244-50. PubMed ID: 9688156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging.
    Zhang Q; Hu Z; Jiang C; Zheng H; Ge Y; Liang D
    Phys Med Biol; 2020 Aug; 65(15):155010. PubMed ID: 32369793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Computed Tomography: Learning Projection-Domain Weights From Image Domain in Limited Angle Problems.
    Wurfl T; Hoffmann M; Christlein V; Breininger K; Huang Y; Unberath M; Maier AK
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1454-1463. PubMed ID: 29870373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are Convolutional Neural Networks Trained on ImageNet Images Wearing Rose-Colored Glasses?: A Quantitative Comparison of ImageNet, Computed Tomographic, Magnetic Resonance, Chest X-Ray, and Point-of-Care Ultrasound Images for Quality.
    Blaivas L; Blaivas M
    J Ultrasound Med; 2021 Feb; 40(2):377-383. PubMed ID: 32757235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction.
    Eo T; Shin H; Jun Y; Kim T; Hwang D
    Med Image Anal; 2020 Jul; 63():101689. PubMed ID: 32299061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning reconstruction framework for X-ray computed tomography with incomplete data.
    Dong J; Fu J; He Z
    PLoS One; 2019; 14(11):e0224426. PubMed ID: 31675363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One network to solve all ROIs: Deep learning CT for any ROI using differentiated backprojection.
    Han Y; Ye JC
    Med Phys; 2019 Dec; 46(12):e855-e872. PubMed ID: 31811795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework.
    Jodeiri A; Zoroofi RA; Hiasa Y; Takao M; Sugano N; Sato Y; Otake Y
    Comput Methods Programs Biomed; 2020 Feb; 184():105282. PubMed ID: 31896056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New classes of helical weighting algorithms with applications to fast CT reconstruction.
    Besson G
    Med Phys; 1998 Aug; 25(8):1521-32. PubMed ID: 9725143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.
    Xu J; Liu H
    Phys Med Biol; 2019 Sep; 64(18):185016. PubMed ID: 31292287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.