BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31944949)

  • 1. Explainable Anatomical Shape Analysis Through Deep Hierarchical Generative Models.
    Biffi C; Cerrolaza JJ; Tarroni G; Bai W; de Marvao A; Oktay O; Ledig C; Le Folgoc L; Kamnitsas K; Doumou G; Duan J; Prasad SK; Cook SA; O'Regan DP; Rueckert D
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2088-2099. PubMed ID: 31944949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
    Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M
    Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminative and generative models for anatomical shape analysis on point clouds with deep neural networks.
    Gutiérrez-Becker B; Sarasua I; Wachinger C
    Med Image Anal; 2021 Jan; 67():101852. PubMed ID: 33129154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
    Liu M; Cheng D; Wang K; Wang Y;
    Neuroinformatics; 2018 Oct; 16(3-4):295-308. PubMed ID: 29572601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward an interpretable Alzheimer's disease diagnostic model with regional abnormality representation via deep learning.
    Lee E; Choi JS; Kim M; Suk HI;
    Neuroimage; 2019 Nov; 202():116113. PubMed ID: 31446125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry.
    Sørensen L; Igel C; Pai A; Balas I; Anker C; Lillholm M; Nielsen M;
    Neuroimage Clin; 2017; 13():470-482. PubMed ID: 28119818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Alzheimer's Disease Classification using Texture Features.
    So JH; Madusanka N; Choi HK; Choi BK; Park HG
    Curr Med Imaging Rev; 2019; 15(7):689-698. PubMed ID: 32008517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain MRI analysis using a deep learning based evolutionary approach.
    Shahamat H; Saniee Abadeh M
    Neural Netw; 2020 Jun; 126():218-234. PubMed ID: 32259762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region-of-Interest based sparse feature learning method for Alzheimer's disease identification.
    Wang L; Liu Y; Zeng X; Cheng H; Wang Z; Wang Q
    Comput Methods Programs Biomed; 2020 Apr; 187():105290. PubMed ID: 31927305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.
    Ramzan F; Khan MUG; Rehmat A; Iqbal S; Saba T; Rehman A; Mehmood Z
    J Med Syst; 2019 Dec; 44(2):37. PubMed ID: 31853655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition.
    Wu G; Kim M; Sanroma G; Wang Q; Munsell BC; Shen D;
    Neuroimage; 2015 Feb; 106():34-46. PubMed ID: 25463474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-atlas label fusion with random local binary pattern features: Application to hippocampus segmentation.
    Zhu H; Tang Z; Cheng H; Wu Y; Fan Y
    Sci Rep; 2019 Nov; 9(1):16839. PubMed ID: 31727982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer's Disease.
    Ortiz A; Munilla J; Górriz JM; Ramírez J
    Int J Neural Syst; 2016 Nov; 26(7):1650025. PubMed ID: 27478060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation.
    Coupé P; Manjón JV; Fonov V; Pruessner J; Robles M; Collins DL
    Neuroimage; 2011 Jan; 54(2):940-54. PubMed ID: 20851199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis.
    Suk HI; Lee SW; Shen D;
    Brain Struct Funct; 2016 Jun; 221(5):2569-87. PubMed ID: 25993900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble learning system for a 4-way classification of Alzheimer's disease and mild cognitive impairment.
    Yao D; Calhoun VD; Fu Z; Du Y; Sui J
    J Neurosci Methods; 2018 May; 302():75-81. PubMed ID: 29578038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer's Disease.
    Li F; Liu M;
    J Neurosci Methods; 2019 Jul; 323():108-118. PubMed ID: 31132373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.