BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31944960)

  • 1. Sleep Spindle Detection Using RUSBoost and Synchrosqueezed Wavelet Transform.
    Kinoshita T; Fujiwara K; Kano M; Ogawa K; Sumi Y; Matsuo M; Kadotani H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):390-398. PubMed ID: 31944960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep stage classification using single-channel EOG.
    Rahman MM; Bhuiyan MIH; Hassan AR
    Comput Biol Med; 2018 Nov; 102():211-220. PubMed ID: 30170769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles.
    LaRocco J; Franaszczuk PJ; Kerick S; Robbins K
    J Neural Eng; 2018 Dec; 15(6):066015. PubMed ID: 30132445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient automatic arousals detection algorithm in single channel EEG.
    Ugur TK; Erdamar A
    Comput Methods Programs Biomed; 2019 May; 173():131-138. PubMed ID: 31046987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep-spindle identification on EEG signals from polysomnographie recordings using correntropy.
    Ulloa S; Estevez PA; Huijse P; Held CM; Perez CA; Chamorro R; Garrido M; Algarin C; Peirano P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3736-3739. PubMed ID: 28269102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automatic sleep spindle detector based on wavelets and the teager energy operator.
    Ahmed B; Redissi A; Tafreshi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2596-9. PubMed ID: 19965220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.
    Ebrahimi F; Setarehdan SK; Ayala-Moyeda J; Nazeran H
    Comput Methods Programs Biomed; 2013 Oct; 112(1):47-57. PubMed ID: 23895941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing.
    Kabir MM; Tafreshi R; Boivin DB; Haddad N
    Med Biol Eng Comput; 2015 Jul; 53(7):635-44. PubMed ID: 25779627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A personalized semi-automatic sleep spindle detection (PSASD) framework.
    Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA
    J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the use of line length for automatic sleep spindle detection.
    Imtiaz SA; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5024-7. PubMed ID: 25571121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validating an automated sleep spindle detection algorithm using an individualized approach.
    Ray LB; Fogel SM; Smith CT; Peters KR
    J Sleep Res; 2010 Jun; 19(2):374-8. PubMed ID: 20149067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing EEG sleep spindle propagation. Part 1: theory and proposed methodology.
    O'Reilly C; Nielsen T
    J Neurosci Methods; 2014 Jan; 221():202-14. PubMed ID: 23999176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects.
    Wendt SL; Christensen JA; Kempfner J; Leonthin HL; Jennum P; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4250-3. PubMed ID: 23366866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting.
    Hassan AR; Bhuiyan MIH
    Comput Methods Programs Biomed; 2017 Mar; 140():201-210. PubMed ID: 28254077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of K-complexes based on the wavelet transform.
    Krohne LK; Hansen RB; Christensen JA; Sorensen HB; Jennum P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5450-3. PubMed ID: 25571227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep spindle detection through amplitude-frequency normal modelling.
    Nonclercq A; Urbain C; Verheulpen D; Decaestecker C; Van Bogaert P; Peigneux P
    J Neurosci Methods; 2013 Apr; 214(2):192-203. PubMed ID: 23370313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank.
    Sharma M; Goyal D; Achuth PV; Acharya UR
    Comput Biol Med; 2018 Jul; 98():58-75. PubMed ID: 29775912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multichannel matching pursuit and EEG inverse solutions.
    Durka PJ; Matysiak A; Montes EM; Sosa PV; Blinowska KJ
    J Neurosci Methods; 2005 Oct; 148(1):49-59. PubMed ID: 15908012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records.
    Garces Correa A; Laciar Leber E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1405-8. PubMed ID: 21096343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential dementia biomarkers based on the time-varying microstructure of sleep EEG spindles.
    Ktonas PY; Golemati S; Xanthopoulos P; Sakkalis V; Ortigueira MD; Tsekou H; Zervakis M; Paparrigopoulos T; Soldatos CR
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2464-7. PubMed ID: 18002493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.