These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31944989)

  • 1. Reducing Amplitude Fluctuation by Gradual Phase Shift in Midair Ultrasound Haptics.
    Suzuki S; Fujiwara M; Makino Y; Shinoda H
    IEEE Trans Haptics; 2020; 13(1):87-93. PubMed ID: 31944989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path Routing Optimization for STM Ultrasound Rendering.
    Barreiro H; Sinclair S; Otaduy MA
    IEEE Trans Haptics; 2020; 13(1):45-51. PubMed ID: 32092013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPH Fluid Tactile Rendering for Ultrasonic Mid-Air Haptics.
    Jang J; Park J
    IEEE Trans Haptics; 2020; 13(1):116-122. PubMed ID: 31944991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptics and the heart: Force and tactile feedback system for cardiovascular interventions.
    Schecter S; Lin W; Gopal A; Fan R; Rashba E
    Cardiovasc Revasc Med; 2018 Sep; 19(6S):36-40. PubMed ID: 30017728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation Pressure Field Reconstruction for Ultrasound Midair Haptics by Greedy Algorithm With Brute-Force Search.
    Suzuki S; Fujiwara M; Makino Y; Shinoda H
    IEEE Trans Haptics; 2021; 14(4):914-921. PubMed ID: 33914686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PUMAH: Pan-Tilt Ultrasound Mid-Air Haptics for Larger Interaction Workspace in Virtual Reality.
    Howard T; Marchal M; Lecuyer A; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):38-44. PubMed ID: 31902770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tactile Stimulation by Repetitive Lateral Movement of Midair Ultrasound Focus.
    Takahashi R; Hasegawa K; Shinoda H
    IEEE Trans Haptics; 2020; 13(2):334-342. PubMed ID: 31634143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Surface Haptics: Enabling Tactile Effects on Touch Surfaces.
    Basdogan C; Giraud F; Levesque V; Choi S
    IEEE Trans Haptics; 2020; 13(3):450-470. PubMed ID: 32340960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote sensing of mechanical properties of materials using a novel ultrasound transducer and signal processing.
    Murayama Y; Constantinou CE; Omata S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):439-44. PubMed ID: 15857052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm.
    Large DR; Harrington K; Burnett G; Georgiou O
    Appl Ergon; 2019 Nov; 81():102909. PubMed ID: 31422270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Optimization for Multipoint Haptic Feedback Based on Ultrasound Array.
    Long Z; Ye S; Peng Z; Yuan Y; Li Z
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatosensory Evoked Responses Elicited by Haptic Sensations in Midair.
    Lehser C; Wagner E; Strauss DJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2070-2077. PubMed ID: 30222579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro.
    Ma Q; Zhang D; Gong X; Ma Y
    Phys Med Biol; 2007 Apr; 52(7):1879-92. PubMed ID: 17374917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Moisture-Resistant Soft Actuator with Low Driving Voltages for Haptic Stimulations in Virtual Games.
    Qiu W; Li Z; Wang G; Peng Y; Zhang M; Wang X; Zhong J; Lin L
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31257-31266. PubMed ID: 35776539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant Frequency Skin Stretch for Wearable Haptics.
    Shull PB; Tan T; Culbertson H; Zhu X; Okamura AM
    IEEE Trans Haptics; 2019; 12(3):247-256. PubMed ID: 31095499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibration Feedback Latency Affects Material Perception During Rod Tapping Interactions.
    Hachisu T; Kajimoto H
    IEEE Trans Haptics; 2017; 10(2):288-295. PubMed ID: 28113957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensating for Fingertip Size to Render Tactile Cues More Accurately.
    Young EM; Gueorguiev D; Kuchenbecker KJ; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):144-151. PubMed ID: 31944996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.