BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31945090)

  • 1. Pan-cancer analysis of somatic mutations and epigenetic alterations in insulated neighbourhood boundaries.
    Pinoli P; Stamoulakatou E; Nguyen AP; Rodríguez Martínez M; Ceri S
    PLoS One; 2020; 15(1):e0227180. PubMed ID: 31945090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes.
    Liu EM; Martinez-Fundichely A; Diaz BJ; Aronson B; Cuykendall T; MacKay M; Dhingra P; Wong EWP; Chi P; Apostolou E; Sanjana NE; Khurana E
    Cell Syst; 2019 May; 8(5):446-455.e8. PubMed ID: 31078526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pan-Cancer Analysis Reveals Differential Susceptibility of Bidirectional Gene Promoters to DNA Methylation, Somatic Mutations, and Copy Number Alterations.
    Thompson JA; Christensen BC; Marsit CJ
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic mutations in colorectal cancer are associated with the epigenetic modifications.
    Lei H; Tao K
    J Cell Mol Med; 2020 Oct; 24(20):11828-11836. PubMed ID: 32865336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin accessibility contributes to simultaneous mutations of cancer genes.
    Shi Y; Su XB; He KY; Wu BH; Zhang BY; Han ZG
    Sci Rep; 2016 Oct; 6():35270. PubMed ID: 27762310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTCF loss mediates unique DNA hypermethylation landscapes in human cancers.
    Damaschke NA; Gawdzik J; Avilla M; Yang B; Svaren J; Roopra A; Luo JH; Yu YP; Keles S; Jarrard DF
    Clin Epigenetics; 2020 Jun; 12(1):80. PubMed ID: 32503656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.
    Gong Y; Lazaris C; Sakellaropoulos T; Lozano A; Kambadur P; Ntziachristos P; Aifantis I; Tsirigos A
    Nat Commun; 2018 Feb; 9(1):542. PubMed ID: 29416042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers.
    Guo YA; Chang MM; Huang W; Ooi WF; Xing M; Tan P; Skanderup AJ
    Nat Commun; 2018 Apr; 9(1):1520. PubMed ID: 29670109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.
    Perera D; Poulos RC; Shah A; Beck D; Pimanda JE; Wong JW
    Nature; 2016 Apr; 532(7598):259-63. PubMed ID: 27075100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative epigenetic and genetic pan-cancer somatic alteration portraits.
    Salas LA; Johnson KC; Koestler DC; O'Sullivan DE; Christensen BC
    Epigenetics; 2017 Jul; 12(7):561-574. PubMed ID: 28426276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains.
    Khoury A; Achinger-Kawecka J; Bert SA; Smith GC; French HJ; Luu PL; Peters TJ; Du Q; Parry AJ; Valdes-Mora F; Taberlay PC; Stirzaker C; Statham AL; Clark SJ
    Nat Commun; 2020 Jan; 11(1):54. PubMed ID: 31911579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulator dysfunction and oncogene activation in IDH mutant gliomas.
    Flavahan WA; Drier Y; Liau BB; Gillespie SM; Venteicher AS; Stemmer-Rachamimov AO; Suvà ML; Bernstein BE
    Nature; 2016 Jan; 529(7584):110-4. PubMed ID: 26700815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline.
    Kaiser VB; Semple CA
    Genome Biol; 2018 Jul; 19(1):101. PubMed ID: 30060743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes.
    Li Y; Huang W; Niu L; Umbach DM; Covo S; Li L
    BMC Genomics; 2013 Aug; 14():553. PubMed ID: 23945083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological isolation of developmental regulators in mammalian genomes.
    Wu HJ; Landshammer A; Stamenova EK; Bolondi A; Kretzmer H; Meissner A; Michor F
    Nat Commun; 2021 Aug; 12(1):4897. PubMed ID: 34385432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome.
    Chen H; Tian Y; Shu W; Bo X; Wang S
    PLoS One; 2012; 7(7):e41374. PubMed ID: 22829947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation.
    Fang C; Wang Z; Han C; Safgren SL; Helmin KA; Adelman ER; Serafin V; Basso G; Eagen KP; Gaspar-Maia A; Figueroa ME; Singer BD; Ratan A; Ntziachristos P; Zang C
    Genome Biol; 2020 Sep; 21(1):247. PubMed ID: 32933554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationships explain CTCF zinc finger mutation phenotypes in cancer.
    Bailey CG; Gupta S; Metierre C; Amarasekera PMS; O'Young P; Kyaw W; Laletin T; Francis H; Semaan C; Sharifi Tabar M; Singh KP; Mullighan CG; Wolkenhauer O; Schmitz U; Rasko JEJ
    Cell Mol Life Sci; 2021 Dec; 78(23):7519-7536. PubMed ID: 34657170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of a CTCF topological boundary uncovers principles of enhancer-oncogene regulation.
    Kim KL; Rahme GJ; Goel VY; El Farran CA; Hansen AS; Bernstein BE
    Mol Cell; 2024 Apr; 84(7):1365-1376.e7. PubMed ID: 38452764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.