These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31945109)
1. Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189. Setiawan AB; Teo CH; Kikuchi S; Sassa H; Kato K; Koba T PLoS One; 2020; 15(1):e0227578. PubMed ID: 31945109 [TBL] [Abstract][Full Text] [Related]
2. Chromosomal Locations of a Non-LTR Retrotransposon, Menolird18, in Cucumis melo and Cucumis sativus, and Its Implication on Genome Evolution of Cucumis Species. Setiawan AB; Teo CH; Kikuchi S; Sassa H; Kato K; Koba T Cytogenet Genome Res; 2020; 160(9):554-564. PubMed ID: 33171461 [TBL] [Abstract][Full Text] [Related]
3. Karyotyping in melon (Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization. Liu C; Liu J; Li H; Zhang Z; Han Y; Huang S; Jin W Cytogenet Genome Res; 2010 Jul; 129(1-3):241-9. PubMed ID: 20551614 [TBL] [Abstract][Full Text] [Related]
4. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. Argyris JM; Ruiz-Herrera A; Madriz-Masis P; Sanseverino W; Morata J; Pujol M; Ramos-Onsins SE; Garcia-Mas J BMC Genomics; 2015 Jan; 16(1):4. PubMed ID: 25612459 [TBL] [Abstract][Full Text] [Related]
5. Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Han Y; Zhang Z; Liu C; Liu J; Huang S; Jiang J; Jin W Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14937-41. PubMed ID: 19706458 [TBL] [Abstract][Full Text] [Related]
6. Karyotyping of commercial cultivars of melon (Cucumis melo L.). Santos MC; Souza MM; de Melo CAF; Silva GS Mol Biol Rep; 2022 Nov; 49(11):10279-10292. PubMed ID: 36097123 [TBL] [Abstract][Full Text] [Related]
7. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). He Q; Cai Z; Hu T; Liu H; Bao C; Mao W; Jin W BMC Plant Biol; 2015 Apr; 15():105. PubMed ID: 25928652 [TBL] [Abstract][Full Text] [Related]
8. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Brandes A; Thompson H; Dean C; Heslop-Harrison JS Chromosome Res; 1997 Jun; 5(4):238-46. PubMed ID: 9244451 [TBL] [Abstract][Full Text] [Related]
9. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715 [TBL] [Abstract][Full Text] [Related]
10. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Schmidt T; Heslop-Harrison JS Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122 [TBL] [Abstract][Full Text] [Related]
11. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. Zhang Y; Cheng C; Li J; Yang S; Wang Y; Li Z; Chen J; Lou Q BMC Genomics; 2015 Sep; 16(1):730. PubMed ID: 26407707 [TBL] [Abstract][Full Text] [Related]
12. Centromeric repetitive sequences in Arabidopsis thaliana. Murata M; Ogura Y; Motoyoshi F Jpn J Genet; 1994 Aug; 69(4):361-70. PubMed ID: 7545957 [TBL] [Abstract][Full Text] [Related]
13. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). Ritschel PS; Lins TC; Tristan RL; Buso GS; Buso JA; Ferreira ME BMC Plant Biol; 2004 May; 4():9. PubMed ID: 15149552 [TBL] [Abstract][Full Text] [Related]
14. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Koo DH; Nam YW; Choi D; Bang JW; de Jong H; Hur Y Chromosome Res; 2010 Apr; 18(3):325-36. PubMed ID: 20198418 [TBL] [Abstract][Full Text] [Related]
15. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. Li Y; Zuo S; Zhang Z; Li Z; Han J; Chu Z; Hasterok R; Wang K Plant J; 2018 Mar; 93(6):1088-1101. PubMed ID: 29381236 [TBL] [Abstract][Full Text] [Related]
16. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). Menzel G; Dechyeva D; Wenke T; Holtgräwe D; Weisshaar B; Schmidt T Ann Bot; 2008 Oct; 102(4):521-30. PubMed ID: 18682437 [TBL] [Abstract][Full Text] [Related]
17. How diverse a monocentric chromosome can be? Repeatome and centromeric organization of Juncus effusus (Juncaceae). Dias Y; Mata-Sucre Y; Thangavel G; Costa L; Báez M; Houben A; Marques A; Pedrosa-Harand A Plant J; 2024 Jun; 118(6):1832-1847. PubMed ID: 38461471 [TBL] [Abstract][Full Text] [Related]
18. Organization and evolution of four differentially amplified tandem repeats in the Cucumis hystrix genome. Yang S; Qin X; Cheng C; Li Z; Lou Q; Li J; Chen J Planta; 2017 Oct; 246(4):749-761. PubMed ID: 28668977 [TBL] [Abstract][Full Text] [Related]
19. A direct repeat sequence associated with the centromeric retrotransposons in wheat. Ito H; Nasuda S; Endo TR Genome; 2004 Aug; 47(4):747-56. PubMed ID: 15284880 [TBL] [Abstract][Full Text] [Related]
20. A cereal centromeric sequence. Aragón-Alcaide L; Miller T; Schwarzacher T; Reader S; Moore G Chromosoma; 1996 Dec; 105(5):261-8. PubMed ID: 8939818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]