These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31945289)

  • 1. Band-Gap Tunable 2D Hexagonal (GaN)
    Li J; Yang W; Wu A; Zhang X; Xu T; Liu B
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8583-8591. PubMed ID: 31945289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)
    Wu A; Li J; Liu B; Yang W; Jiang Y; Liu L; Zhang X; Xiong C; Jiang X
    Dalton Trans; 2017 Feb; 46(8):2643-2652. PubMed ID: 28165517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solubility and crystallographic facet tailoring of (GaN)(1-x)(ZnO)(x) pseudobinary solid-solution nanostructures as promising photocatalysts.
    Li J; Liu B; Yang W; Cho Y; Zhang X; Dierre B; Sekiguchi T; Wu A; Jiang X
    Nanoscale; 2016 Feb; 8(6):3694-703. PubMed ID: 26815407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity.
    Ohno T; Bai L; Hisatomi T; Maeda K; Domen K
    J Am Chem Soc; 2012 May; 134(19):8254-9. PubMed ID: 22524238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: the role of Rh
    Godin R; Hisatomi T; Domen K; Durrant JR
    Chem Sci; 2018 Oct; 9(38):7546-7555. PubMed ID: 30319755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting.
    Maeda K; Takata T; Hara M; Saito N; Inoue Y; Kobayashi H; Domen K
    J Am Chem Soc; 2005 Jun; 127(23):8286-7. PubMed ID: 15941253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected visible light driven photocatalytic activity without cocatalysts and sacrificial reagents from a (GaN)
    Dharmagunawardhane HAN; James A; Wu Q; Woerner WR; Palomino RM; Sinclair A; Orlov A; Parise JB
    RSC Adv; 2018 Feb; 8(16):8976-8982. PubMed ID: 35539868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Photocatalyst Based on a CdS Quantum Dots/ZnO Nanosheets 0D/2D Heterojunction for Hydrogen Evolution from Water Splitting.
    Ma D; Shi JW; Zou Y; Fan Z; Ji X; Niu C
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25377-25386. PubMed ID: 28696670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overall water splitting on (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution photocatalyst: relationship between physical properties and photocatalytic activity.
    Maeda K; Teramura K; Takata T; Hara M; Saito N; Toda K; Inoue Y; Kobayashi H; Domen K
    J Phys Chem B; 2005 Nov; 109(43):20504-10. PubMed ID: 16853653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface Engineering of Monolayer MoS
    Zhang Z; Qian Q; Li B; Chen KJ
    ACS Appl Mater Interfaces; 2018 May; 10(20):17419-17426. PubMed ID: 29706066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template Approach to Crystalline GaN Nanosheets.
    Liu B; Yang W; Li J; Zhang X; Niu P; Jiang X
    Nano Lett; 2017 May; 17(5):3195-3201. PubMed ID: 28414238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.
    Maeda K; Sakamoto N; Ikeda T; Ohtsuka H; Xiong A; Lu D; Kanehara M; Teranishi T; Domen K
    Chemistry; 2010 Jul; 16(26):7750-9. PubMed ID: 20564294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and Band Gap Tailoring of Crystalline (GaN)
    Li J; Liu B; Wu A; Yang B; Yang W; Liu F; Zhang X; An V; Jiang X
    Inorg Chem; 2018 May; 57(9):5240-5248. PubMed ID: 29634249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-temperature synthesis of carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets with enhanced visible light photocatalytic activity.
    Huang H; Huang N; Wang Z; Xia G; Chen M; He L; Tong Z; Ren C
    J Colloid Interface Sci; 2017 Sep; 502():77-88. PubMed ID: 28478224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation Mechanism and Bandgap Reduction of GaN-ZnO Solid-Solution Thin Films Fabricated by Nanolamination of Atomic Layer Deposition.
    Liao MW; Jeng HT; Perng TP
    Adv Mater; 2023 Mar; 35(9):e2207849. PubMed ID: 36495592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insight on the Formation of GaN:ZnO Solid Solution from Zn-Ga Layered Double Hydroxide Using Urea as the Nitriding Agent.
    Katagiri K; Hayashi Y; Yoshiyuki R; Inumaru K; Uchiyama T; Nagata N; Uchimoto Y; Miyoshi A; Maeda K
    Inorg Chem; 2018 Nov; 57(21):13953-13962. PubMed ID: 30295474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A first-principles study of two-dimensional NbSe
    Yeoh KH; Chew KH; Yoon TL; Chang YHR; Ong DS
    Phys Chem Chem Phys; 2021 Nov; 23(42):24222-24232. PubMed ID: 34668497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precisely tunable thickness of graphitic carbon nitride nanosheets for visible-light-driven photocatalytic hydrogen evolution.
    Hong Y; Li C; Li D; Fang Z; Luo B; Yan X; Shen H; Mao B; Shi W
    Nanoscale; 2017 Sep; 9(37):14103-14110. PubMed ID: 28901369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnCdO
    Zhao ZC; Yang CL; Meng QT; Wang MS; Ma XG
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118068. PubMed ID: 31958607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst.
    Yuan YJ; Wang F; Hu B; Lu HW; Yu ZT; Zou ZG
    Dalton Trans; 2015 Jun; 44(24):10997-1003. PubMed ID: 25989095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.