These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31945289)

  • 21. Correction: Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)
    Wu A; Li J; Liu B; Yang W; Jiang Y; Liu L; Zhang X; Xiong C; Jiang X
    Dalton Trans; 2017 Apr; 46(14):4860. PubMed ID: 28327705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase Transformation Synthesis of Strontium Tantalum Oxynitride-Based Heterojunction for Improved Visible Light-Driven Hydrogen Evolution.
    Zeng W; Bian Y; Cao S; Ma Y; Liu Y; Zhu A; Tan P; Pan J
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21328-21334. PubMed ID: 29877074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid density functional study of band alignment in ZnO-GaN and ZnO-(Ga(1-x)Zn(x))(N(1-x)O(x))-GaN heterostructures.
    Wang Z; Zhao M; Wang X; Xi Y; He X; Liu X; Yan S
    Phys Chem Chem Phys; 2012 Dec; 14(45):15693-8. PubMed ID: 23086201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of 0D/2D Schottky Heterojunctions of ZnO and Ti
    Irfan M; Ahmad I; Shukrullah S; Hussain H; Atif M; Legutko S; Petru J; Hatala M; Naz MY; Rahman S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Well-organized migration of electrons for enhanced hydrogen evolution: Integration of 2D MoS
    Liu W; Liang B; Ma Y; Liu Y; Zhu A; Tan P; Xiong X; Pan J
    J Colloid Interface Sci; 2017 Dec; 508():559-566. PubMed ID: 28869912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Composition-dependent activity of Zn
    Wei L; Zeng D; Liu J; Zheng H; Fujita T; Liao M; Li C; Wei Y
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):3087-3097. PubMed ID: 34802767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation.
    Takanabe K; Uzawa T; Wang X; Maeda K; Katayama M; Kubota J; Kudo A; Domen K
    Dalton Trans; 2009 Dec; (45):10055-62. PubMed ID: 19904433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. WS
    Zou Y; Shi JW; Ma D; Fan Z; Cheng L; Sun D; Wang Z; Niu C
    ChemSusChem; 2018 Apr; 11(7):1187-1197. PubMed ID: 29400001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy.
    Kharche N; Hybertsen MS; Muckerman JT
    Phys Chem Chem Phys; 2014 Jun; 16(24):12057-66. PubMed ID: 24686328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorine-Assisted Low-Temperature Synthesis of GaN:ZnO-Related Solid Solutions with Visible-Light Photoresponse.
    Miyoshi A; Yasuda S; Kanazawa T; Haruki R; Yanagisawa K; Tang Y; Mizuochi R; Yokoi T; Nozawa S; Kimoto K; Maeda K
    ACS Appl Mater Interfaces; 2022 May; 14(17):19756-19765. PubMed ID: 35451831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: structural, optical and photocatalytic properties.
    Umar A; Chauhan MS; Chauhan S; Kumar R; Kumar G; Al-Sayari SA; Hwang SW; Al-Hajry A
    J Colloid Interface Sci; 2011 Nov; 363(2):521-8. PubMed ID: 21862032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photocatalytic Water Splitting on Rh/K₄Nb
    Lin HY; Lin YC
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1224-1231. PubMed ID: 31383122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation.
    Wang Z; Zong X; Gao Y; Han J; Xu Z; Li Z; Ding C; Wang S; Li C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30696-30702. PubMed ID: 28832111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution.
    Wang J; Wang G; Jiang J; Wan Z; Su Y; Tang H
    J Colloid Interface Sci; 2020 Mar; 564():322-332. PubMed ID: 31918200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reddish GaN:ZnO photoelectrode for improved photoelectrochemical solar water splitting.
    Wang Z; Huang H; Monny SA; Xiao M; Wang L
    J Chem Phys; 2020 Jul; 153(2):024706. PubMed ID: 32668936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag₂S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis.
    Khanchandani S; Srivastava PK; Kumar S; Ghosh S; Ganguli AK
    Inorg Chem; 2014 Sep; 53(17):8902-12. PubMed ID: 25144692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational studies on triphenyldiyne as a two-dimensional visible-light-driven photocatalyst for overall water splitting.
    Qi S; Fan Y; Li W; Zhao M
    Phys Chem Chem Phys; 2020 Sep; 22(35):20061-20068. PubMed ID: 32936175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen deficient ZnO 1-x nanosheets with high visible light photocatalytic activity.
    Guo HL; Zhu Q; Wu XL; Jiang YF; Xie X; Xu AW
    Nanoscale; 2015 Apr; 7(16):7216-23. PubMed ID: 25812132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic structure-sunlight driven water splitting activity correlation of (Zn1-yGay)(O1-zNz).
    RajaAmbal S; Yadav AK; Jha SN; Bhattacharyya D; Gopinath CS
    Phys Chem Chem Phys; 2014 Nov; 16(43):23654-62. PubMed ID: 25269851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.