BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31945303)

  • 21. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics.
    Lin F; Li Z; Hua Y; Lim YP
    Expert Rev Proteomics; 2016; 13(4):411-20. PubMed ID: 26954459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges.
    Short NJ; Konopleva M; Kadia TM; Borthakur G; Ravandi F; DiNardo CD; Daver N
    Cancer Discov; 2020 Apr; 10(4):506-525. PubMed ID: 32014868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia.
    Ricciardi MR; Mirabilii S; Licchetta R; Piedimonte M; Tafuri A
    Adv Biol Regul; 2017 Aug; 65():36-58. PubMed ID: 28549531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preservation Method and Phosphate Buffered Saline Washing Affect the Acute Myeloid Leukemia Proteome.
    Wangen R; Aasebø E; Trentani A; Døskeland SO; Bruserud Ø; Selheim F; Hernandez-Valladares M
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29351208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perspectives of proteomics in acute myeloid leukemia.
    Czibere A; Grall F; Aivado M
    Expert Rev Anticancer Ther; 2006 Nov; 6(11):1663-75. PubMed ID: 17134369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted therapy of acute myeloid leukemia in 2012: towards individualized therapy.
    Foran JM
    Hematology; 2012 Apr; 17 Suppl 1():S137-40. PubMed ID: 22507802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute Myeloid Leukemia: from Mutation Profiling to Treatment Decisions.
    DiNardo C; Lachowiez C
    Curr Hematol Malig Rep; 2019 Oct; 14(5):386-394. PubMed ID: 31350639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients.
    Aasebø E; Forthun RB; Berven F; Selheim F; Hernandez-Valladares M
    Curr Pharm Biotechnol; 2016; 17(1):52-70. PubMed ID: 26306748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative proteomic analysis of EZH2 inhibition in acute myeloid leukemia reveals the targets and pathways that precede the induction of cell death.
    Sandow JJ; Infusini G; Holik AZ; Brumatti G; Averink TV; Ekert PG; Webb AI
    Proteomics Clin Appl; 2017 Sep; 11(9-10):. PubMed ID: 28447382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells.
    Weber C; Schreiber TB; Daub H
    J Proteomics; 2012 Feb; 75(4):1343-56. PubMed ID: 22115753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomics of acute myeloid leukaemia: Cytogenetic risk groups differ specifically in their proteome, interactome and post-translational protein modifications.
    Balkhi MY; Trivedi AK; Geletu M; Christopeit M; Bohlander SK; Behre HM; Behre G
    Oncogene; 2006 Nov; 25(53):7041-58. PubMed ID: 16732326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecularly targeted therapy in acute myeloid leukemia.
    Gill H; Leung AY; Kwong YL
    Future Oncol; 2016 Mar; 12(6):827-38. PubMed ID: 26828965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. When the good go bad: Mutant NPM1 in acute myeloid leukemia.
    Kunchala P; Kuravi S; Jensen R; McGuirk J; Balusu R
    Blood Rev; 2018 May; 32(3):167-183. PubMed ID: 29157973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia.
    Pino JC; Posso C; Joshi SK; Nestor M; Moon J; Hansen JR; Hutchinson-Bunch C; Gritsenko MA; Weitz KK; Watanabe-Smith K; Long N; McDermott JE; Druker BJ; Liu T; Tyner JW; Agarwal A; Traer E; Piehowski PD; Tognon CE; Rodland KD; Gosline SJC
    Cell Rep Med; 2024 Jan; 5(1):101359. PubMed ID: 38232702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New strategies for relapsed acute myeloid leukemia: fertile ground for translational research.
    Dinner SN; Giles FJ; Altman JK
    Curr Opin Hematol; 2014 Mar; 21(2):79-86. PubMed ID: 24419335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers.
    Hernandez-Valladares M; Vaudel M; Selheim F; Berven F; Bruserud Ø
    Expert Rev Proteomics; 2017 Aug; 14(8):649-663. PubMed ID: 28693350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel therapeutics in acute myeloid leukemia.
    Sweet K; Lancet JE
    Curr Hematol Malig Rep; 2014 Jun; 9(2):109-17. PubMed ID: 24633743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apoptosis targeted therapies in acute myeloid leukemia: an update.
    Ball S; Borthakur G
    Expert Rev Hematol; 2020 Dec; 13(12):1373-1386. PubMed ID: 33205684
    [No Abstract]   [Full Text] [Related]  

  • 39. Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells.
    Hofmann A; Gerrits B; Schmidt A; Bock T; Bausch-Fluck D; Aebersold R; Wollscheid B
    Blood; 2010 Sep; 116(13):e26-34. PubMed ID: 20570859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute myeloid leukemia with mutated nucleophosmin (NPM1): any hope for a targeted therapy?
    Falini B; Gionfriddo I; Cecchetti F; Ballanti S; Pettirossi V; Martelli MP
    Blood Rev; 2011 Nov; 25(6):247-54. PubMed ID: 21724308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.