BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31945303)

  • 41. Proteomic strategies for individualizing therapy of acute myeloid leukemia (AML).
    Sjøholt G; Bedringaas SL; Døskeland AP; Gjertsen BT
    Curr Pharm Biotechnol; 2006 Jun; 7(3):159-70. PubMed ID: 16789901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New treatment for acute myelogenous leukemia.
    DiNardo CD; Cortes JE
    Expert Opin Pharmacother; 2015 Jan; 16(1):95-106. PubMed ID: 25480777
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia.
    Tabe Y; Tafuri A; Sekihara K; Yang H; Konopleva M
    Expert Opin Ther Targets; 2017 Jul; 21(7):705-714. PubMed ID: 28537457
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tyrosine kinase inhibitors for acute myeloid leukemia: A step toward disease control?
    Megías-Vericat JE; Ballesta-López O; Barragán E; Martínez-Cuadrón D; Montesinos P
    Blood Rev; 2020 Nov; 44():100675. PubMed ID: 32147087
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance.
    Grimwade D; Ivey A; Huntly BJ
    Blood; 2016 Jan; 127(1):29-41. PubMed ID: 26660431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphoprotein DIGE profiles reflect blast differentiation, cytogenetic risk stratification, FLT3/NPM1 mutations and therapy response in acute myeloid leukaemia.
    Forthun RB; Aasebø E; Rasinger JD; Bedringaas SL; Berven F; Selheim F; Bruserud Ø; Gjertsen BT
    J Proteomics; 2018 Feb; 173():32-41. PubMed ID: 29175091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identifying effective drug combinations for patients with acute myeloid leukemia.
    Yilmaz M; Kadia T; Ravandi F
    Expert Rev Anticancer Ther; 2020 Jul; 20(7):591-601. PubMed ID: 32552126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic analysis of acute myeloid leukemia: Identification of potential early biomarkers and therapeutic targets.
    López-Pedrera C; Villalba JM; Siendones E; Barbarroja N; Gómez-Díaz C; Rodríguez-Ariza A; Buendía P; Torres A; Velasco F
    Proteomics; 2006 Apr; 6 Suppl 1():S293-9. PubMed ID: 16521150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeted therapy in acute myeloid leukaemia: current status and future directions.
    Stapnes C; Gjertsen BT; Reikvam H; Bruserud Ø
    Expert Opin Investig Drugs; 2009 Apr; 18(4):433-55. PubMed ID: 19335274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia.
    Del Poeta G; Bruno A; Del Principe MI; Venditti A; Maurillo L; Buccisano F; Stasi R; Neri B; Luciano F; Siniscalchi A; de Fabritiis P; Amadori S
    Curr Cancer Drug Targets; 2008 May; 8(3):207-22. PubMed ID: 18473734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of Personalized Molecular Therapy for Acute Myeloid Leukemia.
    Engen CB; Hajjar E; Gjertsen BT
    Curr Pharm Biotechnol; 2016; 17(1):20-9. PubMed ID: 26420051
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clinical relevance of proteomic profiling in
    Hoff FW; Van Dijk AD; Qiu Y; Hu CW; Ries RE; Ligeralde A; Jenkins GN; Gerbing RB; Gamis AS; Aplenc R; Kolb EA; Alonzo TA; Meshinchi S; Qutub AA; De Bont ESJM; Horton TM; Kornblau SM
    Haematologica; 2022 Oct; 107(10):2329-2343. PubMed ID: 35021602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia.
    Gebru MT; Wang HG
    J Hematol Oncol; 2020 Nov; 13(1):155. PubMed ID: 33213500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia.
    Wouters BJ; Delwel R
    Blood; 2016 Jan; 127(1):42-52. PubMed ID: 26660432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A chemogenomic approach to identify personalized therapy for patients with relapse or refractory acute myeloid leukemia: results of a prospective feasibility study.
    Collignon A; Hospital MA; Montersino C; Courtier F; Charbonnier A; Saillard C; D'Incan E; Mohty B; Guille A; Adelaïde J; Carbuccia N; Garnier S; Mozziconacci MJ; Zemmour C; Pakradouni J; Restouin A; Castellano R; Chaffanet M; Birnbaum D; Collette Y; Vey N
    Blood Cancer J; 2020 Jun; 10(6):64. PubMed ID: 32488055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Updates on DNA methylation modifiers in acute myeloid leukemia.
    Contieri B; Duarte BKL; Lazarini M
    Ann Hematol; 2020 Apr; 99(4):693-701. PubMed ID: 32025842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells.
    Tibes R; Qiu Y; Lu Y; Hennessy B; Andreeff M; Mills GB; Kornblau SM
    Mol Cancer Ther; 2006 Oct; 5(10):2512-21. PubMed ID: 17041095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of genomics in the clinical management of patients with cytogenetically normal acute myeloid leukemia.
    Falini B; Martelli MP
    Best Pract Res Clin Haematol; 2015; 28(2-3):90-7. PubMed ID: 26590764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A scalable method for molecular network reconstruction identifies properties of targets and mutations in acute myeloid leukemia.
    Ong E; Szedlak A; Kang Y; Smith P; Smith N; McBride M; Finlay D; Vuori K; Mason J; Ball ED; Piermarocchi C; Paternostro G
    J Comput Biol; 2015 Apr; 22(4):266-88. PubMed ID: 25844667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies.
    Hou HA; Tien HF
    J Biomed Sci; 2020 Jul; 27(1):81. PubMed ID: 32690020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.