These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 31945501)
1. Characterization of heavy metal toxicity in some plants and microorganisms-A preliminary approach for environmental bioremediation. Diaconu M; Pavel LV; Hlihor RM; Rosca M; Fertu DI; Lenz M; Corvini PX; Gavrilescu M N Biotechnol; 2020 May; 56():130-139. PubMed ID: 31945501 [TBL] [Abstract][Full Text] [Related]
2. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. Sobariu DL; Fertu DIT; Diaconu M; Pavel LV; Hlihor RM; Drăgoi EN; Curteanu S; Lenz M; Corvini PF; Gavrilescu M N Biotechnol; 2017 Oct; 39(Pt A):125-134. PubMed ID: 27620529 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: An in vitro study. Ali J; Ali F; Ahmad I; Rafique M; Munis MFH; Hassan SW; Sultan T; Iftikhar M; Chaudhary HJ Ecotoxicol Environ Saf; 2021 Jan; 208():111769. PubMed ID: 33396087 [TBL] [Abstract][Full Text] [Related]
4. In vitro chronic phytotoxicity of heavy metals and metalloids to Lepidium sativum (garden cress). Bożym M; Rybak J Ecotoxicology; 2024 Jan; 33(1):94-103. PubMed ID: 38227083 [TBL] [Abstract][Full Text] [Related]
5. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Rizvi A; Ahmed B; Zaidi A; Khan MS Ecotoxicology; 2019 Apr; 28(3):302-322. PubMed ID: 30758729 [TBL] [Abstract][Full Text] [Related]
6. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related]
7. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. Fuentes A; Lloréns M; Sáez J; Aguilar MI; Ortuño JF; Meseguer VF J Hazard Mater; 2004 May; 108(3):161-9. PubMed ID: 15120869 [TBL] [Abstract][Full Text] [Related]
8. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Rizvi A; Ahmed B; Zaidi A; Khan MS Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175 [TBL] [Abstract][Full Text] [Related]
9. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Steliga T; Kluk D Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481 [TBL] [Abstract][Full Text] [Related]
10. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons. Lipińska A; Wyszkowska J; Kucharski J Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the phytoremediation potential of dominant plant species growing in a chromium salt-producing factory wasteland, China. Yan X; Wang J; Song H; Peng Y; Zuo S; Gao T; Duan X; Qin D; Dong J Environ Sci Pollut Res Int; 2020 Mar; 27(7):7657-7671. PubMed ID: 31889268 [TBL] [Abstract][Full Text] [Related]
12. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Zahoor M; Irshad M; Rahman H; Qasim M; Afridi SG; Qadir M; Hussain A Ecotoxicol Environ Saf; 2017 Aug; 142():139-149. PubMed ID: 28407499 [TBL] [Abstract][Full Text] [Related]
13. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip. Siddiqui MM; Abbasi BH; Ahmad N; Ali M; Mahmood T Toxicol Ind Health; 2014 Apr; 30(3):238-49. PubMed ID: 22872632 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
15. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Gill SS; Khan NA; Tuteja N Plant Sci; 2012 Jan; 182():112-20. PubMed ID: 22118622 [TBL] [Abstract][Full Text] [Related]
16. Assessing toxicity of metal contaminated soil from glassworks sites with a battery of biotests. Hagner M; Romantschuk M; Penttinen OP; Egfors A; Marchand C; Augustsson A Sci Total Environ; 2018 Feb; 613-614():30-38. PubMed ID: 28903077 [TBL] [Abstract][Full Text] [Related]
17. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
18. The potential of the Phytotoxkit microbiotest for hazard evaluation of sediments in eutrophic freshwater ecosystems. Czerniawska-Kusza I; Kusza G Environ Monit Assess; 2011 Aug; 179(1-4):113-21. PubMed ID: 20890787 [TBL] [Abstract][Full Text] [Related]
19. [Effects of stress duration and non-toxic ions on heavy metals toxicity to Arabidopsis seed germination and seedling growth]. Li W; Mao R; Liu X Ying Yong Sheng Tai Xue Bao; 2005 Oct; 16(10):1943-7. PubMed ID: 16422519 [TBL] [Abstract][Full Text] [Related]
20. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Zeng W; Li F; Wu C; Yu R; Wu X; Shen L; Liu Y; Qiu G; Li J Bioprocess Biosyst Eng; 2020 Jan; 43(1):153-167. PubMed ID: 31549306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]