These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 31945521)
41. Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of (14)C-catechol in an agricultural soil. Shan J; Wang Y; Gu J; Zhou W; Ji R; Yan X Chemosphere; 2014 Jul; 107():109-114. PubMed ID: 24875877 [TBL] [Abstract][Full Text] [Related]
42. Effects of nano- and microplastics on the bioaccumulation and distribution of phenanthrene in the soil feeding earthworm Metaphire guillelmi. Jiang X; Ma Y; Wang L; Chen Q; Ji R Sci Total Environ; 2022 Aug; 834():155125. PubMed ID: 35405236 [TBL] [Abstract][Full Text] [Related]
43. Effect of triclosan on reproduction, DNA damage and heat shock protein gene expression of the earthworm Eisenia fetida. Lin D; Li Y; Zhou Q; Xu Y; Wang D Ecotoxicology; 2014 Dec; 23(10):1826-32. PubMed ID: 25134678 [TBL] [Abstract][Full Text] [Related]
44. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota. Cheng Y; Song W; Tian H; Zhang K; Li B; Du Z; Zhang W; Wang J; Wang J; Zhu L Chemosphere; 2021 Mar; 267():129219. PubMed ID: 33321277 [TBL] [Abstract][Full Text] [Related]
45. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms. Snyder EH; O'Connor GA; McAvoy DC Chemosphere; 2011 Jan; 82(3):460-7. PubMed ID: 21035164 [TBL] [Abstract][Full Text] [Related]
46. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Kinney CA; Furlong ET; Kolpin DW; Burkhardt MR; Zaugg SD; Werner SL; Bossio JP; Benotti MJ Environ Sci Technol; 2008 Mar; 42(6):1863-70. PubMed ID: 18409605 [TBL] [Abstract][Full Text] [Related]
47. Opposite effects of the earthworm Eisenia fetida on the bioavailability of Zn in soils amended with ZnO and ZnS nanoparticles. Bao S; Huang M; Tang W; Wang T; Xu J; Fang T Environ Pollut; 2020 May; 260():114045. PubMed ID: 32045968 [TBL] [Abstract][Full Text] [Related]
48. Fate of triclosan and triclocarban in soil columns with and without biosolids surface application. Kwon JW; Xia K Environ Toxicol Chem; 2012 Feb; 31(2):262-9. PubMed ID: 22105314 [TBL] [Abstract][Full Text] [Related]
49. Comparative evaluation of four biosolids formulations on the effects of triclosan on plant-arbuscular mycorrhizal fungal interactions in three crop species. Shahmohamadloo RS; Lissemore L; Prosser RS; Sibley PK Sci Total Environ; 2017 Apr; 583():292-299. PubMed ID: 28104329 [TBL] [Abstract][Full Text] [Related]
50. Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil. Langdon KA; Warne MS; Smernik RJ; Shareef A; Kookana RS Sci Total Environ; 2013 Mar; 447():56-63. PubMed ID: 23376516 [TBL] [Abstract][Full Text] [Related]
51. Toxicity and bioaccumulation of biosolids-borne triclosan in food crops. Pannu MW; Toor GS; O'Connor GA; Wilson PC Environ Toxicol Chem; 2012 Sep; 31(9):2130-7. PubMed ID: 22761010 [TBL] [Abstract][Full Text] [Related]
52. Effects of triclosan and biosolids on microbial community composition in an agricultural soil. Park I; Zhang N; Ogunyoku TA; Young TM; Scow KM Water Environ Res; 2013 Dec; 85(12):2237-2242. PubMed ID: 24597039 [TBL] [Abstract][Full Text] [Related]
53. Fate of triclosan in agricultural soils after biosolid applications. Lozano N; Rice CP; Ramirez M; Torrents A Chemosphere; 2010 Feb; 78(6):760-6. PubMed ID: 19932914 [TBL] [Abstract][Full Text] [Related]
54. Composition, Release, and Transformation of Earthworm Tissue-Bound Residues of Tetrabromobisphenol A in Soil. Yun X; Zhang L; Wang W; Gu J; Wang Y; He Y; Ji R Environ Sci Technol; 2024 Jan; 58(4):2069-2077. PubMed ID: 38237036 [TBL] [Abstract][Full Text] [Related]
55. Fate of Triclosan and Methyltriclosan in soil from biosolids application. Lozano N; Rice CP; Ramirez M; Torrents A Environ Pollut; 2012 Jan; 160(1):103-8. PubMed ID: 22035932 [TBL] [Abstract][Full Text] [Related]
56. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness. Huang C; Wang W; Yue S; Adeel M; Qiao Y Environ Pollut; 2020 Aug; 263(Pt A):114586. PubMed ID: 32325356 [TBL] [Abstract][Full Text] [Related]
57. Applying the diffusive gradient in thin films method to assess soil mercury bioavailability to the earthworm Eisenia fetida. Nguyen VH; Seon JY; Qasim GH; Fareed H; Hong Y; Han S Environ Sci Pollut Res Int; 2021 Aug; 28(29):39840-39852. PubMed ID: 33765261 [TBL] [Abstract][Full Text] [Related]
58. Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban. Fu Q; Wu X; Ye Q; Ernst F; Gan J Water Res; 2016 Oct; 102():117-124. PubMed ID: 27337347 [TBL] [Abstract][Full Text] [Related]
59. Accumulation and speciation of arsenic in Eisenia fetida in sodium arsenite spiked soils - A dynamic interaction between soil and earthworms. Xing W; Geng H; Wang Y; Zhao L; Yang Y; Wang Y; Tian S; Cao Y; Zhang Z; Li L Chemosphere; 2023 Apr; 319():137905. PubMed ID: 36696923 [TBL] [Abstract][Full Text] [Related]
60. Impacts of Endemic Earthworms (Megascolecidae) in Biosolids-Amended Soil. Kim YN; Robinson B; Horswell J; Boyer S; Dickinson N J Environ Qual; 2017 Jan; 46(1):177-184. PubMed ID: 28177399 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]