These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31945617)

  • 1. Actomyosin, vimentin and LINC complex pull on osteosarcoma nuclei to deform on micropillar topography.
    Tusamda Wakhloo N; Anders S; Badique F; Eichhorn M; Brigaud I; Petithory T; Vassaux M; Milan JL; Freund JN; Rühe J; Davidson PM; Pieuchot L; Anselme K
    Biomaterials; 2020 Mar; 234():119746. PubMed ID: 31945617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization.
    Keeling MC; Flores LR; Dodhy AH; Murray ER; Gavara N
    Sci Rep; 2017 Jul; 7(1):5219. PubMed ID: 28701767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the nucleus in leukocyte migration.
    Li Y; Chen M; Chang W
    J Leukoc Biol; 2022 Oct; 112(4):771-783. PubMed ID: 35916042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization.
    Badique F; Stamov DR; Davidson PM; Veuillet M; Reiter G; Freund JN; Franz CM; Anselme K
    Biomaterials; 2013 Apr; 34(12):2991-3001. PubMed ID: 23357373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmonotonic Self-Deformation of Cell Nuclei on Topological Surfaces with Micropillar Array.
    Liu X; Liu R; Gu Y; Ding J
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18521-18530. PubMed ID: 28514142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approaches for understanding the nuclear force balance in living, adherent cells.
    Neelam S; Dickinson RB; Lele TP
    Methods; 2016 Feb; 94():27-32. PubMed ID: 26115785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographically induced self-deformation of the nuclei of cells: dependence on cell type and proposed mechanisms.
    Davidson PM; Fromigué O; Marie PJ; Hasirci V; Reiter G; Anselme K
    J Mater Sci Mater Med; 2010 Mar; 21(3):939-46. PubMed ID: 20012166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeletal control of nuclear migration in neurons and non-neuronal cells.
    Kengaku M
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(9):337-349. PubMed ID: 30416174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of the force field required for nucleus deformation during cell migration through constrictions.
    Estabrook ID; Thiam HR; Piel M; Hawkins RJ
    PLoS Comput Biol; 2021 May; 17(5):e1008592. PubMed ID: 34029312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recapitulation of molecular regulators of nuclear motion during cell migration.
    Sneider A; Hah J; Wirtz D; Kim DH
    Cell Adh Migr; 2019 Dec; 13(1):50-62. PubMed ID: 30261154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies.
    Broers JL; Peeters EA; Kuijpers HJ; Endert J; Bouten CV; Oomens CW; Baaijens FP; Ramaekers FC
    Hum Mol Genet; 2004 Nov; 13(21):2567-80. PubMed ID: 15367494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nesprin-2G, a Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension.
    Arsenovic PT; Ramachandran I; Bathula K; Zhu R; Narang JD; Noll NA; Lemmon CA; Gundersen GG; Conway DE
    Biophys J; 2016 Jan; 110(1):34-43. PubMed ID: 26745407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered natural and synthetic polymer surfaces induce nuclear deformation in osteosarcoma cells.
    Antmen E; Ermis M; Demirci U; Hasirci V
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):366-376. PubMed ID: 29663651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleus and nucleus-cytoskeleton connections in 3D cell migration.
    Liu L; Luo Q; Sun J; Song G
    Exp Cell Res; 2016 Oct; 348(1):56-65. PubMed ID: 27609669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.
    Okeyo KO; Adachi T; Sunaga J; Hojo M
    J Biomech; 2009 Nov; 42(15):2540-8. PubMed ID: 19665125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the cell nucleus in mechanotransduction.
    Janota CS; Calero-Cuenca FJ; Gomes ER
    Curr Opin Cell Biol; 2020 Apr; 63():204-211. PubMed ID: 32361559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actomyosin contractility requirements and reciprocal cell-tissue mechanics for cancer cell invasion through collagen-based channels.
    Beunk L; Bakker GJ; van Ens D; Bugter J; Gal F; Svoren M; Friedl P; Wolf K
    Eur Phys J E Soft Matter; 2022 May; 45(5):48. PubMed ID: 35575822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rear cortex contraction aids in nuclear transit during confined migration by increasing pressure in the cell posterior.
    Keys J; Cheung BCH; Elpers MA; Wu M; Lammerding J
    J Cell Sci; 2024 Jun; 137(12):. PubMed ID: 38832512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts.
    Alam SG; Lovett D; Kim DI; Roux KJ; Dickinson RB; Lele TP
    J Cell Sci; 2015 May; 128(10):1901-11. PubMed ID: 25908852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Type and Nuclear Size Dependence of the Nuclear Deformation of Cells on a Micropillar Array.
    Liu R; Liu Q; Pan Z; Liu X; Ding J
    Langmuir; 2019 Jun; 35(23):7469-7477. PubMed ID: 30226387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.