BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31945633)

  • 1. Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles.
    James HP; Jadhav S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110782. PubMed ID: 31945633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEG-grafted phospholipids in vesicles: Effect of PEG chain length and concentration on mechanical properties.
    Mahendra A; James HP; Jadhav S
    Chem Phys Lipids; 2019 Jan; 218():47-56. PubMed ID: 30521788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroformation of giant vesicles from an inverse phase precursor.
    Mertins O; da Silveira NP; Pohlmann AR; Schröder AP; Marques CM
    Biophys J; 2009 Apr; 96(7):2719-26. PubMed ID: 19348754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights on the interactions of chitosan with phospholipid vesicles. Part II: Membrane stiffening and pore formation.
    Mertins O; Dimova R
    Langmuir; 2013 Nov; 29(47):14552-9. PubMed ID: 24168435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.
    Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The combination of block copolymers and phospholipids to form giant hybrid unilamellar vesicles (GHUVs) does not systematically lead to "intermediate" membrane properties.
    Dao TPT; Fernandes F; Fauquignon M; Ibarboure E; Prieto M; Le Meins JF
    Soft Matter; 2018 Aug; 14(31):6476-6484. PubMed ID: 30043790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a planar zwitterionic lipid bilayer on titanium oxide.
    Cho NJ; Frank CW
    Langmuir; 2010 Oct; 26(20):15706-10. PubMed ID: 20857902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid copolymer-phospholipid vesicles: phase separation resembling mixed phospholipid lamellae, but with mechanical stability and control.
    Chen D; Santore MM
    Soft Matter; 2015 Apr; 11(13):2617-26. PubMed ID: 25687473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeation of a beta-heptapeptide derivative across phospholipid bilayers.
    Shimanouchi T; Walde P; Gardiner J; Mahajan YR; Seebach D; Thomae A; Krämer SD; Voser M; Kuboi R
    Biochim Biophys Acta; 2007 Nov; 1768(11):2726-36. PubMed ID: 17714685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PRODAN Photophysics as a Tool to Determine the Bilayer Properties of Different Unilamellar Vesicles Composed of Phospholipids.
    Luna MA; Girardi VR; Sánchez-Cerviño MC; Rivero G; Falcone RD; Moyano F; Correa NM
    Langmuir; 2024 Jan; 40(1):657-667. PubMed ID: 38100549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obtention of Giant Unilamellar Hybrid Vesicles by Electroformation and Measurement of their Mechanical Properties by Micropipette Aspiration.
    Ibarboure E; Fauquignon M; Le Meins JF
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers.
    Ly HV; Longo ML
    Biophys J; 2004 Aug; 87(2):1013-33. PubMed ID: 15298907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers.
    Runas KA; Malmstadt N
    Soft Matter; 2015 Jan; 11(3):499-505. PubMed ID: 25415555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of amyloid beta-peptides on the lysis tension of lipid bilayer vesicles containing oxysterols.
    Kim DH; Frangos JA
    Biophys J; 2008 Jul; 95(2):620-8. PubMed ID: 18390616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic deformation of lipid bilayer vesicles.
    Wu SH; Sankhagowit S; Biswas R; Wu S; Povinelli ML; Malmstadt N
    Soft Matter; 2015 Oct; 11(37):7385-91. PubMed ID: 26268612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can NO-indomethacin counteract the topical gastric toxicity induced by indomethacin interactions with phospholipid bilayers?
    Pereira-Leite C; Nunes C; Bozelli JC; Schreier S; Kamma-Lorger CS; Cuccovia IM; Reis S
    Colloids Surf B Biointerfaces; 2018 Sep; 169():375-383. PubMed ID: 29803153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.