These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 31945736)
1. The impact of auditory nerve functional states on the correlations between human and computer decisions for electrically evoked compound action potential threshold. Li Q; Zhang C; Lu T; Xu C; Sun Z; Fan W; Wang Z; Li S Int J Pediatr Otorhinolaryngol; 2020 Apr; 131():109866. PubMed ID: 31945736 [TBL] [Abstract][Full Text] [Related]
2. Determining electrically evoked compound action potential thresholds: a comparison of computer versus human analysis methods. Glassman EK; Hughes ML Ear Hear; 2013; 34(1):96-109. PubMed ID: 22885406 [TBL] [Abstract][Full Text] [Related]
3. A Comparison of Alternating Polarity and Forward Masking Artifact-Reduction Methods to Resolve the Electrically Evoked Compound Action Potential. Baudhuin JL; Hughes ML; Goehring JL Ear Hear; 2016; 37(4):e247-55. PubMed ID: 26928001 [TBL] [Abstract][Full Text] [Related]
4. [Electrically evoked auditory nerve compound action potentials in Nucleus CI24M cochlear implant users]. Zhu X; Cao K; Pan T; Yang H; Wang Y Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2002 Jan; 16(1):5-8. PubMed ID: 11944479 [TBL] [Abstract][Full Text] [Related]
5. The sensitivity of different methods for detecting abnormalities in auditory nerve function. Lu T; Li Q; Zhang C; Chen M; Wang Z; Li S Biomed Eng Online; 2020 Feb; 19(1):7. PubMed ID: 32013979 [TBL] [Abstract][Full Text] [Related]
6. Electrically evoked compound action potential (ECAP) in cochlear implant children: Changes in auditory nerve response in first year of cochlear implant use. Telmesani LM; Said NM Int J Pediatr Otorhinolaryngol; 2016 Mar; 82():28-33. PubMed ID: 26857311 [TBL] [Abstract][Full Text] [Related]
7. A new approach for the determination of ECAP thresholds. Hoth S; Spitzer P; Praetorius M Cochlear Implants Int; 2018 Mar; 19(2):104-114. PubMed ID: 29161976 [TBL] [Abstract][Full Text] [Related]
8. Changes in the Electrically Evoked Compound Action Potential over time After Implantation and Subsequent Deafening in Guinea Pigs. Ramekers D; Benav H; Klis SFL; Versnel H J Assoc Res Otolaryngol; 2022 Dec; 23(6):721-738. PubMed ID: 35948695 [TBL] [Abstract][Full Text] [Related]
9. SpeedCAP: An Efficient Method for Estimating Neural Activation Patterns Using Electrically Evoked Compound Action-Potentials in Cochlear Implant Users. Garcia C; Deeks JM; Goehring T; Borsetto D; Bance M; Carlyon RP Ear Hear; 2023 May-Jun 01; 44(3):627-640. PubMed ID: 36477611 [TBL] [Abstract][Full Text] [Related]
10. Electrically evoked amplitude modulation following response in cochlear implant candidates: comparison with auditory nerve response telemetry, subjective electrical stimulation, and speech perception. Hirschfelder A; Gräbel S; Olze H Otol Neurotol; 2012 Aug; 33(6):968-75. PubMed ID: 22772009 [TBL] [Abstract][Full Text] [Related]
11. Late electrically-evoked compound action potentials as markers for acute micro-lesions of spiral ganglion neurons. Konerding W; Arenberg JG; Kral A; Baumhoff P Hear Res; 2022 Jan; 413():108057. PubMed ID: 32883545 [TBL] [Abstract][Full Text] [Related]
13. Effects of Stimulus Polarity and Artifact Reduction Method on the Electrically Evoked Compound Action Potential. Hughes ML; Goehring JL; Baudhuin JL Ear Hear; 2017; 38(3):332-343. PubMed ID: 28045836 [TBL] [Abstract][Full Text] [Related]
14. Recording and analysis of electrically evoked compound action potentials (ECAPs) with MED-EL cochlear implants and different artifact reduction strategies in Matlab. Bahmer A; Peter O; Baumann U J Neurosci Methods; 2010 Aug; 191(1):66-74. PubMed ID: 20558202 [TBL] [Abstract][Full Text] [Related]
15. A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function. Skidmore J; Ramekers D; Colesa DJ; Schvartz-Leyzac KC; Pfingst BE; He S Ear Hear; 2022; 43(1):150-164. PubMed ID: 34241983 [TBL] [Abstract][Full Text] [Related]
16. Cochlear Implantation with the CI512 and CI532 Precurved Electrode Arrays: One-Year Speech Recognition and Intraoperative Thresholds of Electrically Evoked Compound Action Potentials. Videhult Pierre P; Eklöf M; Smeds H; Asp F Audiol Neurootol; 2019; 24(6):299-308. PubMed ID: 31846976 [TBL] [Abstract][Full Text] [Related]
17. The Effects of GJB2 or SLC26A4 Gene Mutations on Neural Response of the Electrically Stimulated Auditory Nerve in Children. Luo J; Xu L; Chao X; Wang R; Pellittieri A; Bai X; Fan Z; Wang H; He S Ear Hear; 2020; 41(1):194-207. PubMed ID: 31124793 [TBL] [Abstract][Full Text] [Related]
18. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Gordon KA; Papsin BC; Harrison RV Ear Hear; 2004 Oct; 25(5):447-63. PubMed ID: 15599192 [TBL] [Abstract][Full Text] [Related]
19. Facilitation properties in electrically evoked compound action potentials depending on spatial location and on threshold. Dambon J; Mewes A; Beyer A; Dambon J; Ambrosch P; Hey M Hear Res; 2023 Oct; 438():108858. PubMed ID: 37556897 [TBL] [Abstract][Full Text] [Related]
20. ART and AutoART ECAP measurements and cochlear nerve anatomy as predictors in adult cochlear implant recipients. Schrank L; Nachtigäller P; Müller J; Hempel JM; Canis M; Spiegel JL; Rader T Eur Arch Otorhinolaryngol; 2024 Jul; 281(7):3461-3473. PubMed ID: 38219245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]