These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31945830)
1. Low-Power BPSK Inductive Data Link for an Implanted Intracortical Visual Prosthesis. Omisakin A; Mestrom R; Bentum M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1-5. PubMed ID: 31945830 [TBL] [Abstract][Full Text] [Related]
2. Low-Power Wireless Data Transfer System for Stimulation in an Intracortical Visual Prosthesis. Omisakin A; Mestrom RMC; Bentum MJ Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499122 [TBL] [Abstract][Full Text] [Related]
3. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants. Mirbozorgi SA; Bahrami H; Sawan M; Rusch LA; Gosselin B IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):643-53. PubMed ID: 26469635 [TBL] [Abstract][Full Text] [Related]
4. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices. Lee SY; Hong JH; Hsieh CH; Liang MC; Kung JY IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325 [TBL] [Abstract][Full Text] [Related]
5. A power and data link for a wireless-implanted neural recording system. Rush AD; Troyk PR IEEE Trans Biomed Eng; 2012 Nov; 59(11):3255-62. PubMed ID: 22922687 [TBL] [Abstract][Full Text] [Related]
6. An Integrated Passive Phase-Shift Keying Modulator for Biomedical Implants With Power Telemetry Over a Single Inductive Link. Jiang D; Cirmirakis D; Schormans M; Perkins TA; Donaldson N; Demosthenous A IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):64-77. PubMed ID: 27654977 [TBL] [Abstract][Full Text] [Related]
7. A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC. Tan J; Liew WS; Heng CH; Lian Y IEEE Trans Biomed Circuits Syst; 2014 Aug; 8(4):497-509. PubMed ID: 25073126 [TBL] [Abstract][Full Text] [Related]
8. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling. Gong C; Liu D; Miao Z; Wang W; Li M Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28604610 [TBL] [Abstract][Full Text] [Related]
9. BER performance of implant-to-air high-speed UWB data communications for neural recording systems. Bahrami H; Mirbozorgi SA; Rusch LA; Gosselin B Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3961-4. PubMed ID: 25570859 [TBL] [Abstract][Full Text] [Related]
10. Coupling invariant inductive link for wireless power delivery to a retinal prosthesis. Ng DC; Skafidas E Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3250-3. PubMed ID: 24110421 [TBL] [Abstract][Full Text] [Related]
11. A Wearable Real-Time System for Simultaneous Wireless Power and Data Transmission to Cortical Visual Prosthesis. Barbruni GL; Rodino F; Ros PM; Demarchi D; Ghezzi D; Carrara S IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):580-591. PubMed ID: 38261488 [TBL] [Abstract][Full Text] [Related]
12. An Energy-Efficient ASK Demodulator Robust to Power-Carrier-Interference for Inductive Power and Data Telemetry. Chen Y; Liu Y; Li Y; Wang G; Chen M IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):108-118. PubMed ID: 35104224 [TBL] [Abstract][Full Text] [Related]
13. A low power MICS band phase-locked loop for high resolution retinal prosthesis. Yang J; Skafidas E IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):513-25. PubMed ID: 23893210 [TBL] [Abstract][Full Text] [Related]
14. A complete data and power telemetry system utilizing BPSK and LSK signaling for biomedical implants. Sonkusale S; Luo Z Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3216-9. PubMed ID: 19163391 [TBL] [Abstract][Full Text] [Related]
15. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications. Chi B; Yao J; Han S; Xie X; Li G; Wang Z IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360 [TBL] [Abstract][Full Text] [Related]
16. A 21.3%-Efficiency Clipped-Sinusoid UWB Impulse Radio Transmitter With Simultaneous Inductive Powering and Data Receiving. Soltani N; Jafari HM; Abdelhalim K; Kassiri H; Liu X; Genov R IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1228-1238. PubMed ID: 36445989 [TBL] [Abstract][Full Text] [Related]
17. Very High Bit Rate Near-Field Communication with Low-Interference Coils and Digital Single-Bit Sampling Transceivers for Biomedical Sensor Systems. Stoecklin S; Rosch E; Yousaf A; Reindl L Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114024 [TBL] [Abstract][Full Text] [Related]
18. CMOS stimulating chips capable of wirelessly driving 473 electrodes for a cortical vision prosthesis. Wong YT; Feleppa T; Mohan A; Browne D; Szlawski J; Rosenfeld JV; Lowery A J Neural Eng; 2019 Apr; 16(2):026025. PubMed ID: 30690434 [TBL] [Abstract][Full Text] [Related]
19. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link. Karimi MJ; Jin M; Zhou Y; Dehollain C; Schmid A IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):636-647. PubMed ID: 38285577 [TBL] [Abstract][Full Text] [Related]
20. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. Kiani M; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):1-11. PubMed ID: 24760945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]